若函數(shù)y=f(x)對任意的x,y∈R,恒有f(x+y)=f(x)+f(y),當(dāng)x>0時,恒有f(x)<0
(1)判斷f(x)的奇偶性并證明;
(2)判斷函數(shù)f(x)的單調(diào)性并證明;
(3)若f(2)=1,解不等式f(-x2)+2f(x)+4<0.
解:(1)令x=y=0,可知f(0+0)=f(0)+f(0),解之得f(0)=0,
∴0=f(0)=f(-x+x)=f(-x)+f(x),移項得f(-x)=-f(x)
所以函數(shù)f(x)是奇函數(shù);
(2)根據(jù)題意,得f(x-y)=f(x)+f(-y),
因為函數(shù)(x)是奇函數(shù),得f(x-y)=f(x)-f(y)
設(shè)x1、x2∈R,且x1<x2,得f(x1-x2)=f(x1)-f(x2)
∵當(dāng)x>0時,恒有f(x)<0.x1-x2>0
∴f(x1)-f(x2)<0,得f(x1)<f(x2)
所以函數(shù)f(x)在R上是單調(diào)減函數(shù);
(3)不等式f(-x2)+2f(x)+4<0,
即4<-[f(-x2)+2f(x)],也就是4<-f(-x2+2x)
∵f(2)=1,得f(8)=f(4)+f(4)=4f(2)=4
-f(-x2+2x)=f(x2-2x),且f(x)在R上是單調(diào)減函數(shù),
∴原不等式可化為f(8)<f(x2-2x),得8>x2-2x,解之得-2<x<4
所以原不等式的解集為(-2,4)
分析:(1)令x=y=0,代入已知式并整理,可得f(0)=0.在已知等式中取y=-x,化簡整理可得f(-x)=-f(x),從而得到函數(shù)f(x)是奇函數(shù);
(2)用-y代替y,結(jié)合函數(shù)為奇函數(shù)證出f(x-y)=f(x)-f(y).由此證出當(dāng)x1<x2時,f(x1-x2)=f(x1)-f(x2)>0,從而得到函數(shù)f(x)在R上是單調(diào)減函數(shù);
(3)求出f(8)=4,-[f(-x2)+2f(x)]=f(x2-2x),從而將原不等式轉(zhuǎn)化成f(8)<f(x2-2x),然后根據(jù)函數(shù)的單調(diào)性得到關(guān)于x的一元二次不等式,解之即可得到原不等式的解集.
點評:本題給出抽象函數(shù),要我們討論函數(shù)的奇偶性和單調(diào)性,著重考查了對抽象函數(shù)的理解、函數(shù)的基本性質(zhì)和不等式的解法等知識點,屬于中檔題.