【題目】甲、乙兩人練習罰球,每人練習6組,每組罰球20個,命中個數(shù)的莖葉圖如下:
(1)求甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);
(2)通過計算,比較甲乙兩人的罰球水平.
【答案】(1);(2)甲乙兩人的罰球水平相當,但乙比甲穩(wěn)定.
【解析】
試題分析:(1)將甲、乙的命中個數(shù)從小到大排列,根據(jù)平均數(shù)的計算公式和眾數(shù)的概念,即可求解甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);(2)利用公式求解甲乙的平均數(shù)與方差,即可比較甲乙兩人的罰球水平.
試題解析:(1)將甲的命中個數(shù)從小到大排列為5,8,9,11,16,17,中位數(shù)為,
將乙的命中個數(shù)從小到大排列為6,9,10,12,12,17,眾數(shù)為12.
(2)記甲、乙命中個數(shù)的平均數(shù)分別為,
,
,
,
∵,
,
∴甲乙兩人的罰球水平相當,但乙比甲穩(wěn)定.
科目:高中數(shù)學 來源: 題型:
【題目】某市組織500名志愿者參加敬老活動,為方便安排任務將所有志愿者按年齡(單位:歲)分組,得到的頻率分布表如下.現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人擔任聯(lián)系人.
年齡(歲) | 頻率 | |
第1組 | 0.1 | |
第2組 | 0.1 | |
第3組 | 0.4 | |
第4組 | 0.3 | |
第5組 | 0.1 |
(1)應分別在第1,2,3組中抽取志愿者多少人?
(2)從這6人中隨機抽取2人擔任本次活動的宣傳員,求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向左平移
個單位長度,再向上平移1個單位長度,得到函數(shù)
的圖象,則函數(shù)
具有性質__________.(填入所有正確性質的序號)
①最大值為,圖象關于直線
對稱;
②圖象關于軸對稱;
③最小正周期為;
④圖象關于點對稱;
⑤在上單調遞減
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)據(jù),
,
,…,
是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設這100個數(shù)據(jù)的中位數(shù)為
,平均數(shù)為
,方差為
,如果再加上馬云2016年10月份的收入
(約100億元),則相對于
、
、
,這101個月收入數(shù)據(jù)( )
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形的邊長為1,如圖所示:
(1)在正方形內任取一點,求事件“
”的概率;
(2)用芝麻顆粒將正方形均勻鋪滿,經清點,發(fā)現(xiàn)芝麻一共56粒,有44粒落在扇形內,請據(jù)此估計圓周率
的近似值(精確到0.001).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一塊半徑為的正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個矩形的游泳池
和其附屬設施,附屬設施占地形狀是等腰
,其中
為圓心,
在圓的直徑上,
在半圓周上,如圖.
(1)設,征地面積為
,求
的表達式,并寫出定義域;
(2)當滿足
取得最大值時,開發(fā)效果最佳,求出開發(fā)效果最佳的角
的值,
求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果想用統(tǒng)計圖來反映各數(shù)據(jù)的變化趨勢,比較合適的統(tǒng)計圖是( )
A.條形圖B.折線圖C.扇形圖D.其他圖形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】春節(jié)期間某超市搞促銷活動,當顧客購買商品的金額達到一定數(shù)量后可以參加抽獎活動,活動規(guī)則為:從裝有個黑球,
個紅球,
個白球的箱子中(除顏色外,球完全相同)摸球.
(Ⅰ)當顧客購買金額超過元而不超過
元時,可從箱子中一次性摸出
個小球,每摸出一個黑球獎勵
元的現(xiàn)金,每摸出一個紅球獎勵
元的現(xiàn)金,每摸出一個白球獎勵
元的現(xiàn)金,求獎金數(shù)不少于
元的概率;
(Ⅱ)當購買金額超過元時,可從箱子中摸兩次,每次摸出
個小球后,放回再摸一次,每摸出一個黑球和白球一樣獎勵
元的現(xiàn)金,每摸出一個紅球獎勵
元的現(xiàn)金,求獎金數(shù)小于
元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
在
上單調遞增,
(1)若函數(shù)有實數(shù)零點,求滿足條件的實數(shù)
的集合
;
(2)若對于任意的時,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com