【題目】某超市試銷(xiāo)某種商品一個(gè)月,獲得如下數(shù)據(jù):
日銷(xiāo)售量(件) | |||||
頻率 |
試銷(xiāo)結(jié)束后(假設(shè)該商品的日銷(xiāo)售量的分布規(guī)律不變),超市決定正式營(yíng)銷(xiāo)這種商品.設(shè)某天超市開(kāi)始營(yíng)業(yè)時(shí)有該商品件,當(dāng)天營(yíng)業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存貨少于件,則當(dāng)天進(jìn)貨補(bǔ)充至件,否則不進(jìn)貨.將頻率視為概率.
求當(dāng)天商品進(jìn)貨的概率.
記為第二天開(kāi)始營(yíng)業(yè)時(shí)該商品的件數(shù).
求得分布列.
求得數(shù)學(xué)期望與方差.
【答案】0.3;見(jiàn)解析 ;,.
【解析】
求當(dāng)天商品進(jìn)貨,即當(dāng)天商品的銷(xiāo)售量為件或件,所以設(shè)事件表示當(dāng)天商品需要進(jìn)貨,;
隨機(jī)變量的所有可能的取值為,,.且表示前一天的銷(xiāo)售量為,表示前一天的銷(xiāo)售量為,表示前一天的銷(xiāo)售量為或或,分別求出概率,列出分布列即可;
將中分布列的數(shù)據(jù)代入期望和方差的公式,求解即可.
解:設(shè)事件表示當(dāng)天商品需要進(jìn)貨,則事件包含當(dāng)天該商品的銷(xiāo)售量為件或件,所以.
由題意得,的所有可能的取值為,,.
表示前一天的銷(xiāo)售量為,所以,
表示前一天的銷(xiāo)售量為,所以,
表示前一天的銷(xiāo)售量為或或,所以.
所以隨機(jī)變量的分布列為:
由的分布列可知,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)求證:函數(shù)是增函數(shù);
(2)若函數(shù)在上的值域是(),求實(shí)數(shù)的取值范圍;
(3)若存在,使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AC過(guò)定點(diǎn)F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點(diǎn),且線段PQ的中心點(diǎn)坐標(biāo)(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱中,,,,,,分別為棱的中點(diǎn)
(1)求證:
(2)求直線與所成的角
(3)若為線段的中點(diǎn),在平面內(nèi)的射影為,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:+=1(a>b>0),且橢圓上的點(diǎn)到一個(gè)焦點(diǎn)的最短距離為b.
(1)求橢圓C的離心率;
(2)若點(diǎn)M(,)在橢圓C上,不過(guò)原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),與直線OM相交于點(diǎn)N,且N是線段AB的中點(diǎn),求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過(guò)定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長(zhǎng)為8.
(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;
(Ⅱ) 已知點(diǎn)B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, 若x軸是的角平分線, 證明直線l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在四棱錐中,平面.,,.點(diǎn)是與的交點(diǎn),點(diǎn)在線段上且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com