用0、1、2、3、4、5這六個(gè)數(shù)字,組成沒(méi)有重復(fù)數(shù)字的六位數(shù).
(1)這樣的六位奇數(shù)有多少個(gè)?
(2)數(shù)字5不在個(gè)位的六位數(shù)共有多少個(gè)?
(3)數(shù)字1和2不相鄰,這樣的六位數(shù)共有多少個(gè)?
分析:(1)根據(jù)題意,首先分析末尾數(shù)字,易得末位數(shù)字可以為1、3、5,可得其取法數(shù)目,其首位數(shù)字不能為0,可得其取法數(shù)目,則其他4個(gè)數(shù)字,排在中間4位,有A44種排法,由分步計(jì)數(shù)原理,計(jì)算可得答案;
(2)根據(jù)題意,數(shù)字5不在個(gè)位,且0不能在首位,首先不考慮題意要求,計(jì)算6個(gè)數(shù)字排成一排的排法數(shù)目,再分別計(jì)算數(shù)字5在個(gè)位,0在首位和5在個(gè)位且0在首位的情況數(shù)目,進(jìn)而計(jì)算可得答案;
(3)首先計(jì)算用這6個(gè)數(shù)字可以組成沒(méi)有重復(fù)數(shù)字的六位數(shù)的數(shù)目,再計(jì)算數(shù)字1和2相鄰的六位數(shù)的數(shù)目,由排除法計(jì)算可得答案.
解答:解:(1)根據(jù)題意,末位數(shù)字可以為1、3、5,有A31種取法,
首位數(shù)字不能為0,有A41種取法,
其他4個(gè)數(shù)字,排在中間4位,有A44種排法,
則六位奇數(shù)共有A31A41A44=288(個(gè))
(2)根據(jù)題意,6個(gè)數(shù)字排成一排,共有A66種排法,
數(shù)字5不在個(gè)位,5在個(gè)位的有A55種情況,
而0不能在首位,0在首位的有A55種情況,
其中,5在個(gè)位且0在首位,即其他4個(gè)數(shù)字,排在中間4位,有A44種排法,
則數(shù)字5不在個(gè)位的六位數(shù)共有A66-2A55+A44=504個(gè),
(3)用0、1、2、3、4、5這六個(gè)數(shù)字,組成沒(méi)有重復(fù)數(shù)字的六位數(shù),
0不在首位,則首位有A51種情況,其他5個(gè)位置有A55種情況,即可以組成A51A55個(gè)六位數(shù),
其中,數(shù)字1和2相鄰時(shí)的情況有A41A44A22種,即1、2相鄰的六位數(shù)有A41A44A22個(gè),
則數(shù)字1和2不相鄰的六位數(shù)共有A51A55-A41A44A22=408個(gè).
點(diǎn)評(píng):本題考查排列、組合的應(yīng)用,解題時(shí)注意題干條件對(duì)數(shù)的限制,其次還要注意首位數(shù)字不能為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、用0、1、2、3、4、5這六個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)字小于十位數(shù)字的六位數(shù)的個(gè)數(shù)是多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用0、1、2、3、4、5這6個(gè)數(shù)字,可以組成無(wú)重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù)為
312
312
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用0,1,2,3,4,5這六個(gè)數(shù)字,組成四位數(shù).
( I)可以組成多少?zèng)]有重復(fù)數(shù)字的四位數(shù)?
( II)可組成多少個(gè)恰有兩個(gè)相同數(shù)字的四位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用0,1,2,3,4這五個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的五位數(shù)中,奇數(shù)的個(gè)數(shù)是( 。
A、24B、36C、48D、72

查看答案和解析>>

同步練習(xí)冊(cè)答案