4.已知命題p:?a>0,a+$\frac{1}{a}$≥2,命題q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,則下列判斷正確的是( 。
A.p是假命題B.q是真命題C.p(∧¬q) 是真命題D.(¬p)∧q是真命題

分析 命題p:?a∈R,且a>0,有a+$\frac{1}{a}$≥2,命題q:?x0∈R,sinx0+cosx0=$\sqrt{3}$的真假進(jìn)行判定,再利用復(fù)合命題的真假判定

解答 解:對于命題p:?a∈R,且a>0,有a+$\frac{1}{a}$≥2,
由均值不等式,顯然p為真,故A錯(cuò)
命題q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,sinx0+cosx0=$\sqrt{2}$sin(x0+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$]
而$\sqrt{3}$∉[-$\sqrt{2}$,$\sqrt{2}$]
所以q是假命題,故B錯(cuò)
∴利用復(fù)合命題的真假判定,
p∧(¬q)是真命題,故C正確
(¬p)∧q是假命題,故D錯(cuò)誤
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是復(fù)合命題的真假判定,解決的辦法是先判斷組成復(fù)合命題的簡單命題的真假,再根據(jù)真值表進(jìn)行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若$θ∈[{0,\frac{π}{2}}]$,$cos2θ=\frac{7}{25}$,則sinθ=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{x}$
(1)利用定義法求函數(shù)f(x)=$\frac{1}{x}$的導(dǎo)函數(shù)
(2)求曲線f(x)=$\frac{1}{x}$過(2,0)的切線方程
(3)求(2)的切線與曲線$f(x)=\frac{1}{x}$及直線x=2所圍成的曲邊圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算:${∫}_{1}^{3}$(x-5)dx=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若曲線f(x)=ax3+ln(-2x)存在垂直于y軸的切線,則實(shí)數(shù)a取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖,將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認(rèn)為“體育迷”與性別有關(guān)?
非體育迷體育迷合計(jì)
合計(jì)
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
(2)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\frac{cos2α}{cos(α+\frac{π}{4})}$=$\frac{1}{2}$,則sin2α的值為( 。
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.5個(gè)排成一排,在下列情況下,各有多少種不同排法?
(1)甲排頭
(2)甲不排頭,也不排尾
(3)甲、乙、丙三人必須在一起
(4)甲、乙、丙三人兩兩不相鄰
(5)甲在乙的左邊(不一定相鄰)
(6)甲不排頭,乙不排當(dāng)中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(Ⅰ)求a,b的值;
(Ⅱ)過點(diǎn)A(2,2)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

同步練習(xí)冊答案