考點(diǎn):數(shù)列與不等式的綜合,數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)a3-a1=4,運(yùn)用等差數(shù)列求解:2d=4,d=2,運(yùn)用2a1+d=7,求出a1即可.
(2)得出an+2-an=4,可判斷奇數(shù)項(xiàng)和偶數(shù)項(xiàng),分別構(gòu)成等差數(shù)列,公差為4,首項(xiàng)分別為2,5.
當(dāng)n為偶數(shù)時,S=(a1+a2)+a3+a4+…+an-1+an
當(dāng)n是奇數(shù)時,S=a1+(a2+a3)+(a4+a5)+(a6+a7)+…+(an-1+an)
運(yùn)用整體求解即可.
(3)當(dāng)n為奇數(shù)時,an=a1+2n-2,an+1=2n+5-a1,得出2a12-14a1≥-8n2+4n-17,構(gòu)造函數(shù)最值求解,
當(dāng)n為偶數(shù)時,an=2n+3-a1,an+1=2n+a1,得出2a12-6a1≥-8n2+4n+3,構(gòu)造函數(shù)最值求解,
解答:
解:(1)∵a
n+1+a
n=4n+3.
∴a
2+a
1=7,a
3+a
2=11,
∴a
3-a
1=4,
∵數(shù)列{a
n}是等差數(shù)列,
∴2d=4,d=2,
∴2a
1+d=7,a
1=
.
(2)當(dāng)a
1=2時,a
n+1+a
n=4n+3.a(chǎn)
n+2+a
n+1=4(n+1)+3=4n+7,
∴a
n+2-a
n=4,a
2+a
1=7,a
2=5,a
3=6,
∴可判斷奇數(shù)項(xiàng)和偶數(shù)項(xiàng),分別構(gòu)成等差數(shù)列,公差為4,首項(xiàng)分別為2,5.
∴數(shù)列{a
n}的前n項(xiàng)和S
n=a
1+a
2+a
3+a
4+…+a
n-1+a
n,
∵a
n+1+a
n=4n+3.
∴當(dāng)n為偶數(shù)時,S=(a
1+a
2)+a
3+a
4+…+a
n-1+a
n=7+15+23+…+(4n-1)=
=n
2+,
當(dāng)n是奇數(shù)時,S=a
1+(a
2+a
3)+(a
4+a
5)+(a
6+a
7)+…+(a
n-1+a
n)
=2+11+19+27+…+(4n-1)=2+
××(11+4n-1)=
=n
2+
n-
.
(3)∵判斷奇數(shù)項(xiàng)和偶數(shù)項(xiàng),分別構(gòu)成等差數(shù)列,公差為4,首項(xiàng)分別為2,5.
∴當(dāng)n為奇數(shù)時,a
n=a
1+2n-2,a
n+1=2n+5-a
1,
∵
≥4,
∴2a
12-14a
1≥-8n
2+4n-17,
令f(n)=-8n
2+4n-17,
f(n)
最大值=f(1)=-21
∴2a
12-14a
1+21≥0
∴a
1≥
或a
1≤
-,
當(dāng)n為偶數(shù)時,a
n=2n+3-a
1,a
n+1=2n+a
1,
∵
≥4,
∴2a
12-6a
1≥-8n
2+4n+3,
令g(n)=-8n
2+4n+3
∴g(n)
最大值=g(2)=-21,
∴2a
12-6a
1+21≥0,
△=36-168<0,
∴a
1∈R,
綜上:對任意n∈N
*,都有
≥4成立,a
1的取值范圍為:(-∞,+∞).
點(diǎn)評:本題綜合考察數(shù)列與函數(shù),等式,知識的結(jié)合,分類思想的運(yùn)用,整體思想的運(yùn)用,屬于難題.