某汽車配件廠生產(chǎn)A、B兩種型號的產(chǎn)品,A型產(chǎn)品的一等品率為,二等品率為;B型產(chǎn)品的一等品率為,二等品率為。生產(chǎn)1件A型產(chǎn)品,若是一等品則獲得4萬元利潤,若是二等品則虧損1萬元;生產(chǎn)1件B型產(chǎn)品,若是一等品則獲得6萬元利潤,若是二等品則虧損2萬元。設(shè)生產(chǎn)各件產(chǎn)品相互獨立。

(1)求生產(chǎn)4件A型產(chǎn)品所獲得的利潤不少于10萬元的概率;

(2)記(單位:萬元)為生產(chǎn)1件A型產(chǎn)品和1件B型產(chǎn)品可獲得的利潤,求的分布列及期望值.

解:(1)由題意得一等品件數(shù)為3或4                                              …………2分

即生產(chǎn)4件A型產(chǎn)品所獲得的利潤不少于10萬元的概率為   ………………5分

(2)由題意的所有可能取值為

;    

     

    ………………9分

所以,的分布列為

X

-3

2

5

10

P

0.02

0.08

0.18

0.72

     ………………12分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某汽車配件廠生產(chǎn)A、B兩種型號的產(chǎn)品,A型產(chǎn)品的一等品率為
4
5
,二等品率為
1
5
;B型產(chǎn)品的一等品率為
9
10
,二等品率為
1
10
.生產(chǎn)1件A型產(chǎn)品,若是一等品則獲得4萬元利潤,若是二等品則虧損1萬元;生產(chǎn)1件B型產(chǎn)品,若是一等品則獲得6萬元利潤,若是二等品則虧損2萬元.設(shè)生產(chǎn)各件產(chǎn)品相互獨立.
(1)求生產(chǎn)4件A型產(chǎn)品所獲得的利潤不少于10萬元的概率;
(2)記X(單位:萬元)為生產(chǎn)1件A型產(chǎn)品和1件B型產(chǎn)品可獲得的利潤,求X的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三上學期第四次月考理科數(shù)學 題型:解答題

(本小題滿分12分)

某汽車配件廠生產(chǎn)A、B兩種型號的產(chǎn)品,A型產(chǎn)品的一等品率為,二等品率為;B型產(chǎn)品的一等品率為,二等品率為。生產(chǎn)1件A型產(chǎn)品,若是一等品則獲得4萬元利潤,若是二等品則虧損1萬元;生產(chǎn)1件B型產(chǎn)品,若是一等品則獲得6萬元利潤,若是二等品則虧損2萬元。設(shè)生產(chǎn)各件產(chǎn)品相互獨立。

(1)求生產(chǎn)4件A型產(chǎn)品所獲得的利潤不少于10萬元的概率;

(2)記(單位:萬元)為生產(chǎn)1件A型產(chǎn)品和1件B型產(chǎn)品可獲得的利潤,求的分布列及期望值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某汽車配件廠生產(chǎn)A、B兩種型號的產(chǎn)品,A型產(chǎn)品的一等品率為,二等品率為;B型產(chǎn)品的一等品率為,二等品率為。生產(chǎn)1件A型產(chǎn)品,若是一等品則獲得4萬元利潤,若是二等品則虧損1萬元;生產(chǎn)1件B型產(chǎn)品,若是一等品則獲得6萬元利潤,若是二等品則虧損2萬元。設(shè)生產(chǎn)各件產(chǎn)品相互獨立。

(1)求生產(chǎn)4件A型產(chǎn)品所獲得的利潤不少于10萬元的概率;

(2)記(單位:萬元)為生產(chǎn)1件A型產(chǎn)品和1件B型產(chǎn)品可獲得的利潤,求的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省重點中學盟校高三第二次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

某汽車配件廠生產(chǎn)A、B兩種型號的產(chǎn)品,A型產(chǎn)品的一等品率為,二等品率為;B型產(chǎn)品的一等品率為,二等品率為.生產(chǎn)1件A型產(chǎn)品,若是一等品則獲得4萬元利潤,若是二等品則虧損1萬元;生產(chǎn)1件B型產(chǎn)品,若是一等品則獲得6萬元利潤,若是二等品則虧損2萬元.設(shè)生產(chǎn)各件產(chǎn)品相互獨立.
(1)求生產(chǎn)4件A型產(chǎn)品所獲得的利潤不少于10萬元的概率;
(2)記X(單位:萬元)為生產(chǎn)1件A型產(chǎn)品和1件B型產(chǎn)品可獲得的利潤,求X的分布列及期望值.

查看答案和解析>>

同步練習冊答案