在△ABC中,角A、B、C的對邊分別為a、b、c,AH為BC邊上的高,給出以下四個結(jié)論:
;②;③=b2+c2-2bc•cosA;④.其中所有正確結(jié)論的序號是   
【答案】分析:利用兩個向量的數(shù)量積的定義,兩個向量垂直 的性質(zhì),以及余弦定理,逐一檢驗各個選項的正確性.
解答:解:因為AH為BC邊上的高,故,故①正確.
=≠c•sinB,故②不正確.
=BC2=a2=b2+c2-2bc•cosA,故③正確.
  不一定等于,故④不正確.
綜上,①③正確,
故答案為:①③.
點評:本題考查兩個向量的數(shù)量積的定義,兩個向量垂直,數(shù)量積等于0,以及余弦定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案