【題目】已知函數(shù).
(1)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.
【答案】(1)極大值點(diǎn),且是唯一極值點(diǎn);(2)
【解析】
(1)將代入,求導(dǎo)得到在上單調(diào)遞減,則在上存在唯一零點(diǎn),進(jìn)而可判斷出是的極大值點(diǎn),且是唯一極值點(diǎn);
(2)令,得到,則與的圖象在上有2個(gè)交點(diǎn),利用導(dǎo)數(shù),數(shù)形結(jié)合即可得到的取值范圍.
解:(1)由知.
當(dāng)時(shí),,,顯然在上單調(diào)遞減.
又,,
∴在上存在零點(diǎn),且是唯一零點(diǎn),
當(dāng)時(shí),;
當(dāng)時(shí),,
∴是的極大值點(diǎn),且是唯一極值點(diǎn).
(2)令,則.
令,,
則和的圖象在上有兩個(gè)交點(diǎn),
.
令,則,
所以在上單調(diào)遞減,而,
故當(dāng)時(shí),,即,單調(diào)遞增;
當(dāng)時(shí),,即,單調(diào)遞減.
故.
又,當(dāng)且時(shí),且,
結(jié)合圖象,可知若和的圖象在上有兩個(gè)交點(diǎn),只需,
所以的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某生鮮超市每天從蔬菜生產(chǎn)基地購(gòu)進(jìn)某種蔬菜,每天的進(jìn)貨量相同,進(jìn)價(jià)6元/千克,售價(jià)9元/千克,當(dāng)天未售出的蔬菜被生產(chǎn)基地以2元/千克的價(jià)格回收處理.該超市發(fā)現(xiàn)這種蔬菜每天都有剩余,為此整理了過(guò)往30天這種蔬菜的日需求量(單位:千克),得到如下統(tǒng)計(jì)數(shù)據(jù):
日需求量 | 160 | 170 | 180 | 190 | 200 | 210 | 220 |
天數(shù) | 3 | 6 | 6 | 9 | 4 | 1 | 1 |
以這30天記錄的各日需求量的頻率作為各日需求量的概率,假設(shè)各日需求量相互獨(dú)立.
(1)求在未來(lái)的3天中,至多有1天的日需求量不超過(guò)190千克的概率;
(2)超市為了減少浪費(fèi),提升利潤(rùn),決定調(diào)整每天的進(jìn)貨量(單位:千克),以銷(xiāo)售這種蔬菜的日利潤(rùn)的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《周髀算經(jīng)》中有這樣一個(gè)問(wèn)題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿(mǎn)、芒種這十二個(gè)節(jié)氣其日影長(zhǎng)依次成等差數(shù)列,冬至、立春、春分日影長(zhǎng)之和為31.5尺,前九個(gè)節(jié)氣日影長(zhǎng)之和為85.5尺,則小滿(mǎn)日影長(zhǎng)為( )
A.1.5尺B.2.5尺C.3.5尺D.4.5尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位為了更好地應(yīng)對(duì)新型冠狀病毒肺炎疫情,對(duì)單位的職工進(jìn)行防疫知識(shí)培訓(xùn),所有職工選擇網(wǎng)絡(luò)在線(xiàn)培訓(xùn)和線(xiàn)下培訓(xùn)中的一種方案進(jìn)行培訓(xùn).隨機(jī)抽取了140人的培訓(xùn)成績(jī),統(tǒng)計(jì)發(fā)現(xiàn)樣本中40個(gè)成績(jī)來(lái)自線(xiàn)下培訓(xùn)職工,其余來(lái)自在線(xiàn)培訓(xùn)的職工,并得到如下統(tǒng)計(jì)圖表:
(1)寫(xiě)出線(xiàn)下培訓(xùn)莖葉圖中成績(jī)的中位數(shù),估算在線(xiàn)培訓(xùn)直方圖的中位數(shù)(保留一位小數(shù));
(2)得分90分及以上為成績(jī)優(yōu)秀,完成下邊列聯(lián)表,并判斷是否有的把握認(rèn)為成績(jī)優(yōu)秀與培訓(xùn)方式有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
線(xiàn)下培訓(xùn) | |||
在線(xiàn)培訓(xùn) | |||
合計(jì) |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生課外使用手機(jī)的情況,某學(xué)校收集了本校500名學(xué)生2019年12月課余使用手機(jī)的總時(shí)間(單位:小時(shí))的情況.從中隨機(jī)抽取了50名學(xué)生,將數(shù)據(jù)進(jìn)行整理,得到如圖所示的頻率分布直方圖.已知這50名學(xué)生中,恰有3名女生課余使用手機(jī)的總時(shí)間在,現(xiàn)在從課余使用手機(jī)總時(shí)間在的樣本對(duì)應(yīng)的學(xué)生中隨機(jī)抽取3名,則至少抽到2名女生的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)改造一廢棄的流水線(xiàn)M,為評(píng)估流水線(xiàn)M的性能,連續(xù)兩天從流水線(xiàn)M生產(chǎn)零件上隨機(jī)各抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:記抽取的零件直徑為X.
第一天
直徑/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
第二天
直徑/mm | 58 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 1 | 1 | 2 | 4 | 5 | 21 | 34 | 21 | 3 | 3 | 2 | 1 | 1 | 1 | 100 |
經(jīng)計(jì)算,第一天樣本的平均值,標(biāo)準(zhǔn)差第二天樣本的平均值,標(biāo)準(zhǔn)差
(1)現(xiàn)以?xún)商斐槿〉牧慵䜩?lái)評(píng)判流水線(xiàn)M的性能.
(i)計(jì)算這兩天抽取200件樣本的平均值和標(biāo)準(zhǔn)差(精確到0.01);
(ii)現(xiàn)以頻率值作為概率的估計(jì)值,根據(jù)以下不等式進(jìn)行評(píng)判(P表示相應(yīng)事件的概率),①;②;③評(píng)判規(guī)則為:若同時(shí)滿(mǎn)足上述三個(gè)不等式,則設(shè)備等級(jí)為優(yōu);僅滿(mǎn)足其中兩個(gè),則等級(jí)為良;若僅滿(mǎn)足其中一個(gè),則等級(jí)為合格;若全部不滿(mǎn)足,則等級(jí)為不合格,試判斷流水線(xiàn)M的性能等級(jí).
(2)將直徑X在范圍內(nèi)的零件認(rèn)定為一等品,在范圍以外的零件認(rèn)定為次品,其余認(rèn)定為合格品.現(xiàn)從200件樣本除一等品外的零件中抽取2個(gè),設(shè)為抽到次品的件數(shù),求分布列及其期望.
附注:參考數(shù)據(jù):,,;
參考公式:標(biāo)準(zhǔn)差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),a為常數(shù).
(1)討論函數(shù)的單調(diào)性:
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的右焦點(diǎn),過(guò)點(diǎn)且與軸垂直的直線(xiàn)被橢圓截得的弦長(zhǎng)為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線(xiàn)與橢圓交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為橢圓的右焦點(diǎn),C的準(zhǔn)線(xiàn)與E交于P,Q兩點(diǎn),且.
(1)求E的方程;
(2)過(guò)E的左頂點(diǎn)A作直線(xiàn)l交E于另一點(diǎn)B,且BO(O為坐標(biāo)原點(diǎn))的延長(zhǎng)線(xiàn)交E于點(diǎn)M,若直線(xiàn)AM的斜率為1,求l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com