函數(shù)y=f(x)是定義在a,b上的增函數(shù),其中a,b∈R且0<b<-a,已知y=f(x)無零點,設函數(shù)F(x)=f2(x)+f2(-x),則對于F(x)有以下四個說法:
①定義域是[-b,b];②是偶函數(shù);③最小值是0;④在定義域內單調遞增.
其中正確的有
①②
①②
(填入你認為正確的所有序號)
分析:根據(jù)題意,依次分析4個命題:對于①,根據(jù)F(x)的解析式以及f(x)的定義域,可得a≤x≤b,a≤-x≤b,又由0<b<-a,可得F(x)定義域,可得①正確;對于②,先求出F(-x),可得F(-x)=F(x),再結合F(x)的其定義域,可得F(x)為偶函數(shù),②正確;對于③,舉出反例,當f(x)>1時,可得F(x)的最小值不是0,故③錯誤;
對于④,由于F(x)是偶函數(shù),結合偶函數(shù)的性質,可得④錯誤;綜合可得答案.
解答:解:根據(jù)題意,依次分析4個命題:
對于①,對于F(x)=f2(x)+f2(-x),有a≤x≤b,a≤-x≤b,
而又由0<b<-a,則F(x)=f2(x)+f2(-x)中,x的取值范圍是-b≤x≤b,即其定義域是[-b,b],則①正確;
對于②,F(xiàn)(-x)=f2(-x)+f2(x)=F(x),且其定義域為[-b,b],關于原點對稱,
則F(x)為偶函數(shù),②正確;
對于③,由y=f(x)無零點,假設f(x)=2x,F(xiàn)(x)=22x+2-2x=22x+
1
22x
≥2,其最小值為2,故③錯誤;
對于④,由于F(x)是偶函數(shù),則F(x)在[-b,0]上與[0,b]上的單調性相反,故F(x)在其定義域內不會單調遞增,④錯誤;
故答案為①②.
點評:本題考查函數(shù)的性質,涉及函數(shù)的定義域、奇偶性、單調性、最值等性質,判斷②時,注意要結合函數(shù)F(x)的定義域.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)=ax+
1x+b
(a≠0)
的圖象過點(0,-1)且與直線y=-1有且只有一個公共點;設點P(x0,y0)是函數(shù)y=f(x)圖象上任意一點,過點P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心Q;
(3)證明:線段PM,PN長度的乘積PM•PN為定值;并用點P橫坐標x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某旅游點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過一日的管理費用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費后的所得).
(1)求函數(shù)y=f(x)的解析式及定義域;
(2)試問日凈收入最多時每輛自行車的日租金應定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動點P(x,y)在∠AOx的內部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(1)當k為定值時,動點P的縱坐標y是橫坐標x的函數(shù),求這個函數(shù)y=f(x)的解析式;
(2)根據(jù)k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)y=f(x),有下列命題:
①若a∈[-2,2],則函數(shù)f(x)=
x2+ax+1
的定域為R;
②若f(x)=log
1
2
(x2-3x+2)
,則f(x)的單調增區(qū)間為(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,則
lim
x→2
[(x-2)f(x)]=0
;
(文)若f(x)=
1
x2-x-2
,則值域是(-∞,0)∪(0,+∞)
④定義在R的函數(shù)f(x),且對任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個周期.
其中真命題的編號是
 
.(文理相同)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某服裝批發(fā)商場經(jīng)營的某種服裝,進貨成本40元/件,對外批發(fā)價定為60元/件.該商場為了鼓勵購買者大批量購買,推出優(yōu)惠政策:一次購買不超過50件時,只享受批發(fā)價;一次購買超過50件時,每多購買1件,購買者所購買的所有服裝可在享受批發(fā)價的基礎上,再降低0.1元/件,但最低價不低于50元/件.
(Ⅰ)問一次購買150件時,每件商品售價是多少?
(Ⅱ)問一次購買200件時,每件商品售價是多少?
(Ⅲ)設購買者一次購買x件,商場的售價為y元,試寫出函數(shù)y=f(x)的表達式.

查看答案和解析>>

同步練習冊答案