設拋物線的焦點為,其準線與軸的交點為,過點的直線交拋物線于兩點.
(1)若直線的斜率為,求證:;
(2)設直線的斜率分別為,求的值.

(1)詳見試題解析;(2)

解析試題分析:(1)將直線方程代入拋物線方程消元得一元二次方程,利用韋達定理及向量數(shù)量積坐標公式驗證;(2)設直線與拋物線聯(lián)立得,用表示,再化簡.
試題解析:(1) 與拋物線方程聯(lián)立得 設
;
(2)設直線與拋物線聯(lián)立得,
..
考點:直線與拋物線位置關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的橫坐標為,求斜率的值;②若點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設雙曲線以橢圓的兩個焦點為焦點,且雙曲線的一條漸近線是,
(1)求雙曲線的方程;
(2)若直線與雙曲線交于不同兩點,且都在以為圓心的圓上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的一個頂點為,焦點在軸上,若右焦點到直線的距離為3.
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點、,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知經(jīng)過點A(-4,0)的動直線l與拋物線G:相交于B、C,當直線l的斜率是時,
(Ⅰ)求拋物線G的方程;
(Ⅱ)設線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內切,圓心的軌跡為曲線。
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當圓的半徑最長是,求。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的兩個焦點和上下兩個頂點是一個邊長為2且∠F1B1F2的菱形的四個頂點.
(1)求橢圓的方程;
(2)過右焦點F2 ,斜率為)的直線與橢圓相交于兩點,A為橢圓的右頂點,直線分別交直線于點、,線段的中點為,記直線的斜率為.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點的坐標分別是、,直線相交于點,且它們的斜率之積為
(1)求點軌跡的方程;
(2)若過點的直線與(1)中的軌跡交于不同的兩點,試求面積的取值范圍(為坐標原點).

查看答案和解析>>

同步練習冊答案