設拋物線的焦點為,其準線與軸的交點為,過點的直線交拋物線于兩點.
(1)若直線的斜率為,求證:;
(2)設直線的斜率分別為,求的值.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的橫坐標為,求斜率的值;②若點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設雙曲線以橢圓的兩個焦點為焦點,且雙曲線的一條漸近線是,
(1)求雙曲線的方程;
(2)若直線與雙曲線交于不同兩點,且都在以為圓心的圓上,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的一個頂點為,焦點在軸上,若右焦點到直線的距離為3.
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點、,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知經(jīng)過點A(-4,0)的動直線l與拋物線G:相交于B、C,當直線l的斜率是時,.
(Ⅰ)求拋物線G的方程;
(Ⅱ)設線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內切,圓心的軌跡為曲線。
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當圓的半徑最長是,求。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的兩個焦點和上下兩個頂點是一個邊長為2且∠F1B1F2為的菱形的四個頂點.
(1)求橢圓的方程;
(2)過右焦點F2 ,斜率為()的直線與橢圓相交于兩點,A為橢圓的右頂點,直線、分別交直線于點、,線段的中點為,記直線的斜率為.求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點的坐標分別是、,直線相交于點,且它們的斜率之積為.
(1)求點軌跡的方程;
(2)若過點的直線與(1)中的軌跡交于不同的兩點,試求面積的取值范圍(為坐標原點).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com