10.若向量$|{\overrightarrow a}|=\sqrt{2},|{\overrightarrow b}|=1,|{\overrightarrow c}|=\sqrt{3}$,且$\overrightarrow a•\overrightarrow b=-1$,則$\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$的最大值是( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

分析 運(yùn)用向量的數(shù)量積的定義可得$<\overrightarrow a,\overrightarrow b>={135°}$,不妨設(shè)$\overrightarrow a=(1,1)$,$\overrightarrow b=(-1,0)$,設(shè)$\overrightarrow c=(x,y)$,運(yùn)用向量的數(shù)量積的加減和數(shù)量積的坐標(biāo)表示,計(jì)算即可得到所求最大值.

解答 解:根據(jù)題意,向量$|{\overrightarrow a}|=\sqrt{2},|{\overrightarrow b}|=1,|{\overrightarrow c}|=\sqrt{3}$,且$\overrightarrow a•\overrightarrow b=-1$,
可得cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{-1}{\sqrt{2}}$,
由于0°≤<$\overrightarrow{a}$,$\overrightarrow$>≤180°,
即有$<\overrightarrow a,\overrightarrow b>={135°}$,不妨設(shè)$\overrightarrow a=(1,1)$,$\overrightarrow b=(-1,0)$,
設(shè)$\overrightarrow c=(x,y)$,且x2+y2=3,易知$|y|≤\sqrt{3}$
則$\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c=(\overrightarrow a+\overrightarrow b)•\overrightarrow c=(0,1)•(x,y)=y≤\sqrt{3}$.
當(dāng)x=0,y=$\sqrt{3}$時(shí),取得最大值$\sqrt{3}$.
故選:B.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的定義和性質(zhì),以及向量的數(shù)量積的坐標(biāo)表示,以及不等式的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,以點(diǎn)(0,1)為圓心且與直線mx-y-2m-1=0(x∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為x2+(y-1)2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.給出下列三個(gè)結(jié)論:
①設(shè)回歸直線方程為$\widehat{y}$=2-2.5x,當(dāng)變量x增加1個(gè)單位時(shí),y平均增加2個(gè)單位;
②若命題p:?x0∈[1,+∞),$x_0^2-{x_0}-1<0$,則¬p:?x∈(-∞,1),x2-x-1≥0;
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}=-3$;
其中正確結(jié)論的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等比數(shù)列{an}的各項(xiàng)為正數(shù),且 9a32=a2a6,a3=2a2+9.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下面是關(guān)于公差d>0的等差數(shù)列{an}的四個(gè)命題:p1:數(shù)列{an}是遞增數(shù)列;p2:數(shù)列{an}的前n項(xiàng)和Sn是遞增數(shù)列;p3:數(shù)列{$\frac{{a}_{n}}{n}$}是遞增數(shù)列;p4:數(shù)列{an+nd}是遞增數(shù)列.其中的真命題為( 。
A.p1,p2B.p3,p4C.p2,p3D.p1,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,求:
(1)($\overrightarrow{a}$-2$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$);
(2)|$\overrightarrow{a}$+$\overrightarrow$|;
(3)|3$\overrightarrow{a}$-4$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.過(guò)橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一個(gè)焦點(diǎn)作垂直于長(zhǎng)軸的弦,則此弦長(zhǎng)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.化簡(jiǎn):$\frac{{2cos({\frac{π}{2}-α})+sin({π-2α})}}{{2co{s^2}\frac{α}{2}}}$=2sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=1,AB=AD=2,E,F(xiàn)分別是棱AB,BC的中點(diǎn),證明A1,C1,F(xiàn),E四點(diǎn)共面,并求點(diǎn)B到平面A1EF的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案