精英家教網 > 高中數學 > 題目詳情

如圖所示,在邊長為60 cm的正方形鐵片的四角上切去相等的正方形,再把它沿虛線折起,做成一個無蓋的長方體箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?

箱子底邊長取40 cm時,容積最大,最大容積為16 000 cm3.

解析試題分析:設箱子的底邊長為x cm,則箱子高h=cm.
箱子容積V=V(x)=x2h= (0<x<60).
求V(x)的導數,得V′(x)=60x-x2=0,
解得x1=0(不合題意,舍去),x2=40.
當x在(0,60)內變化時,導數V′(x)的正負如下表:

x
(0,40)
40
(40,60)
V′(x)

0

因此在x=40處,函數V(x)取得極大值,并且這個極大值就是函數V(x)的最大值.
將x=40代入V(x)
得最大容積V=402×=16 000(cm3).
所以箱子底邊長取40 cm時,容積最大,最大容積為16 000 cm3.
考點:本題主要考查函數模型,應用導數研究函數的單調性、最值。
點評:典型題,本題屬于函數及導數應用中的基本問題,通過研究構建函數函數模型,利用導數求函數的最值。關于函數應用問題的考查,在高考題中往往是“一大兩小”。構建函數模型的步驟“審清題意、設出變量、確定函數、求解答案、寫出結語”。本題利用均值定理,確定函數的最值。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2 (x≠0).
(1)判斷f(x)的奇偶性,并說明理由;
(2)若f(1)=2,試判斷f(x)在[2,+∞)上的單調性

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的定義域;
(2)若存在,對任意,總存在唯一,使得成立.求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)已知,求函數的最大值和最小值;
(2)要使函數上f (x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年某工廠生產某種產品,每日的成本(單位:萬元)與日產量(單位:噸)滿足函數關系式,每日的銷售額(單位:萬元)與日產量的函數關系式

已知每日的利潤,且當時,
(1)求的值;
(2)當日產量為多少噸時,每日的利潤可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠生產一種儀器,由于受生產能力和技術水平的限制,會產生一些次品,根據以往的經驗知道,其次品率P與日產量(件)之間近似滿足關系:
(其中為小于96的正整常數)
(注:次品率P=,如P=0.1表示每生產10件產品,有1件次品,其余為合格品.)已知每生產一件合格的儀器可以盈利A元,但每生產一件次品將虧損A/2元,故廠方希望定出合適的日產量。
試將生產這種儀器每天的贏利T(元)表示為日產量(件的函數);
當日產量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

欲修建一橫斷面為等腰梯形(如圖1)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設計為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應為多大時,方能使修建成本最低?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數列.
(1)求實數m的值;
(2)若a、b、c是兩兩不相等的正數,且a、b、c成等比數列,試判斷f(a)+f(c)與2f(b)的大小關系,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知冪函數為偶函數,且在區(qū)間上是單調減函數(Ⅰ)求函數;(Ⅱ)討論的奇偶性.

查看答案和解析>>

同步練習冊答案