【題目】某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.
【答案】3
【解析】 由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為,
如圖所示, 平面,
所以底面積為,
幾何體的高為,所以其體積為.
點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.
【題型】填空題
【結(jié)束】
16
【題目】已知橢圓: 的右焦點為, 為直線上一點,線段交于點,若,則__________.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的命題個數(shù)是 ( )
①. 如果共面, 也共面,則共面;
②.已知直線a的方向向量與平面,若// ,則直線a// ;
③若共面,則存在唯一實數(shù)使,反之也成立;
④.對空間任意點O與不共線的三點A、B、C,若=x+y+z
(其中x、y、z∈R),則P、A、B、C四點共面
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ +2﹣2a(a>0)的圖象在點(1,f(1))處的切線與直線y=2x+1平行.
(1)求a,b滿足的關(guān)系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范圍;
(3)證明:1+ + +…+ > (2n+1)+ (n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的長軸的一個端點是拋物線的焦點,離心率是.
(1)求橢圓E的方程;
(2)過點,斜率為k的動直線與橢圓E相交于A、B兩點,請問x軸上是否存在點M,使為常數(shù)?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:x2﹣7x+10<0,q:x2﹣4mx+3m2<0,其中m>0.
(1)若m=4,且p∧q為真,求x的取值范圍;
(2)若¬q是¬p的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將一副三角板拼接,使它們有公共邊BC,且使兩個三角形所在的平面互相垂直,若
∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6。
⑴ 求證:平面平面ACD;
⑵ 求二面角的平面角的正切值;
⑶ 設(shè)過直線AD且與BC平行的平面為,求點B到平面的距離。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求證:是偶函數(shù);
(2)求證:在上是增函數(shù);
(3)設(shè)(,且),若對任意的,在區(qū)間上總存在兩個不同的數(shù),,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信是現(xiàn)代生活進行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有人,其余每天使用微信在一小時以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.
(Ⅰ)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;
青年人 | 中年人 | 合計 | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
合計 |
(Ⅱ)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認為“經(jīng)常使用微信與年齡有關(guān)”?
(Ⅲ)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取人,從這人中任選人,求事件 “選出的人均是青年人”的概率.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com