在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y = -3上,M點(diǎn)滿足, ,M點(diǎn)的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點(diǎn),l為C在P點(diǎn)處得切線,求O點(diǎn)到l距離的最小值。
(1)y=x-2.
(2)2
(1)設(shè)M(x,y),由已知得B(x,-3),A(0,-1).
所以=(-x,-1-y), ="(0,-3-y)," =(x,-2).
再由題意可知()•="0," 即(-x,-4-2y)•(x,-2)=0.
所以曲線C的方程式為y=x-2.
(2)設(shè)P(x,y)為曲線C:y=x-2上一點(diǎn),因?yàn)閥=x,所以的斜率為x
因此直線的方程為,即。
則o點(diǎn)到的距離.又,所以

當(dāng)=0時取等號,所以o點(diǎn)到距離的最小值為2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知定點(diǎn)F(1,0),點(diǎn)軸上運(yùn)動,點(diǎn)軸上,點(diǎn)
為平面內(nèi)的動點(diǎn),且滿足,
(1)求動點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)是直線上任意一點(diǎn),過點(diǎn)作軌跡的兩條切線,,切點(diǎn)分別為,,設(shè)切線,的斜率分別為,,直線的斜率為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上的一點(diǎn),其縱坐標(biāo)為,.
(1)求拋物線的方程;
(2)設(shè)為拋物線上不同于的兩點(diǎn),且,過兩點(diǎn)分別作拋物線的切線,記兩切線的交點(diǎn)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)A(3,4),F(xiàn)是拋物線y2=8x的焦點(diǎn),M是拋物線上的動點(diǎn),當(dāng)|AM|+|MF|最小時,M點(diǎn)坐標(biāo)是(  )
A.(0,0)B.(3,2)C.(2,4)D.(3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(3分)(2011•重慶)動圓的圓心在拋物線y2=8x上,且動圓恒與直線x+2=0相切,則動圓必過點(diǎn)        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為,動點(diǎn)在拋物線上,點(diǎn),則的最小值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是拋物線y2=4x上一動點(diǎn),則點(diǎn)P到直線l:2x-y+3=0與到y(tǒng)軸的距離之和的最小值是(  )
A.B.C.2 D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線,則它的焦點(diǎn)坐標(biāo)是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=ax2的準(zhǔn)線方程是y=2,則a的值為( 。
A.B.C.8D.﹣8

查看答案和解析>>

同步練習(xí)冊答案