如圖所示,直線x=2與雙曲線C:的漸近線交于E1,E2兩點,記==,任取雙曲線C上的點P,若=a+b,則實數(shù)a和b滿足的一個等式是   
【答案】分析:求出雙曲線C的漸近線方程為y=±x,令x=2,得出直線x=2與雙曲線C的漸近線交于點E1(2,1)、E1(2,-1),可得=(2,1),=(2,-1).再設(shè)雙曲線C上的點P坐標(biāo)為(x,y),根據(jù)=a+b,利用向量的坐標(biāo)運算,可得點P坐標(biāo)為(2a+2b,a-b),最后將這個坐標(biāo)代入,化簡后即可得到4ab=1,即為所求.
解答:解:∵雙曲線C的方程是
∴雙曲線C的漸近線方程為y=±x
∴直線x=2與雙曲線C的漸近線交于點E1(2,1)、E1(2,-1),可得=(2,1),=(2,-1),
設(shè)雙曲線C上的點P坐標(biāo)為(x,y),
=a+b
,即點P坐標(biāo)為(2a+2b,a-b)
∵點P在雙曲線C:
-(a-b)2=1,即4ab=1
故答案為:4ab=1
點評:本題以向量的坐標(biāo)運算為載體,考查了雙曲線的基本概念與簡單幾何性質(zhì),以及平面向量基本定理等知識點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,直線x=2與雙曲線Γ:
x2
4
-y2
=1的漸近線交于E1,E2兩點,記
OE1
=
e1
,
OE2
=
e2
,任取雙曲線上的點P,若
OP
=a
e1
+b
e2
(a,b∈R),則a、b滿足的一個等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,直線x=2與雙曲線C:
x2
4
-y2=1
的漸近線交于E1,E2兩點,記
OE1
=
e1
,
OE2
=
e2
,任取雙曲線C上的點P,若
OP
=a
e1
+b
e2
,則實數(shù)a和b滿足的一個等式是
4ab=1
4ab=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,直線x=2與雙曲線的漸近線交于,兩點,記,任取雙曲線上的點P,若,則a、b滿足的一個等式是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,直線x=2與雙曲線的漸近線交于,兩點,記,任取雙曲線上的點P,若,則a、b滿足的一個等式是    4ab=1     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(上海秋季)解析版(理) 題型:填空題

 [番茄花園1] 如圖所示,直線x=2與雙曲線的漸近線交于,兩點,記,任取雙曲線上的點P,若,則a、b滿足的一個等式是        

 


 [番茄花園1]13。

查看答案和解析>>

同步練習(xí)冊答案