(2012•許昌三模)如圖,圓O的直徑AB=d,P是AB延長(zhǎng)線上一點(diǎn),Bp=a,割線PCD交圓O于點(diǎn)C、D,過(guò)點(diǎn)P作AP的垂線,交直線AC于點(diǎn)E,交直線AD于點(diǎn)F.
(Ⅰ)求證:∠PEC=∠PDF;
(Ⅱ)求PE•PF的值.
分析:(Ⅰ)利用AB是圓O的直徑,可得∠ACB=∠APE=90°,從而P、B、C、E四點(diǎn)共圓,又A,B,C,D四點(diǎn)共圓,利用四點(diǎn)共圓的性質(zhì),可得結(jié)論;
(Ⅱ)證明D,C,E,F(xiàn)四點(diǎn)共圓,利用割線定理,即可求得結(jié)論.
解答:(Ⅰ)證明:連接BC,∵AB是圓O的直徑,∴∠ACB=∠APE=90°,即P,B,C,E四點(diǎn)共圓,
∴∠PEC=∠CBA.
又A,B,C,D四點(diǎn)共圓,∴∠CBA=PDF,
∴∠PEC=∠PDF;
(Ⅱ)解:∵∠PEC=∠PDF,∴D,C,E,F(xiàn)四點(diǎn)共圓
∴PE•PF=PC•PD=PB•PA=a(a+d).
點(diǎn)評(píng):本題考查圓的性質(zhì),考查四點(diǎn)共圓的判定,考查割線的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)已知數(shù)列{an}中,a1=a2=1,且an+2-an=1,則數(shù)列{an}的前100項(xiàng)和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)已知A,B是圓x2+y2=2上兩動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),且∠AOB=120°,以A,B為切點(diǎn)的圓的兩條切線交于點(diǎn)P,則點(diǎn)P的軌跡方程為
x2+y2=8
x2+y2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)如圖,在RT△ABC中,D是斜邊AB上一點(diǎn),且AC=AD,記∠BCD=β,∠ABC=α.
(Ⅰ)求sinα-cos2β的值;
(Ⅱ)若BC=
3
CD,求∠CAB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)如圖,在四面體ABCD中,二面角A-CD-B的平面角為60°,AC⊥CD,BD⊥CD,且AC=CD=2BD,點(diǎn)E、F分別是AD、BC的中點(diǎn).
(Ⅰ)求作平面α,使EF?α,且AC∥平面α,BD∥平面α;
(Ⅱ)求證:EF⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)已知函數(shù)f(x)=ex,若函數(shù)g(x)滿足f(x)≥g(x)恒成立,則稱g(x)為函數(shù)f(x)的下界函數(shù).
(Ⅰ)若函數(shù)g(x)-kx是f(x)的下界函數(shù),求實(shí)數(shù)k的取值范圍;
(Ⅱ)證明:對(duì)于?m≤2,,函數(shù)h(x)=m+lnx都是f(x)的下界函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案