(本題滿分16分)已知數(shù)列中,, 為實常數(shù)),前項和恒為正值,且當(dāng)時,.
⑴ 求證:數(shù)列是等比數(shù)列;
⑵ 設(shè)與的等差中項為,比較與的大小;
⑶ 設(shè)是給定的正整數(shù),.現(xiàn)按如下方法構(gòu)造項數(shù)為有窮數(shù)列:
當(dāng)時,;
當(dāng)時,.
求數(shù)列的前項和.
(本題滿分16分)
解:⑴當(dāng)時, ,
化簡得, .………………………2分
又由,得, 解得,
∴,也滿足, .………………………4分
而恒為正值, ∴數(shù)列是等比數(shù)列. .………………………5分
⑵的首項為1,公比為,.當(dāng)時,,
∴.
當(dāng)時,,
此時 . .……………………7分
當(dāng)時,
.
∵恒為正值 ∴ 且,
若,則, 若,則. .……………………10分
綜上可得,當(dāng)時, ;
當(dāng)時,若,則, 若,則 .……………………11分
⑶∵ ∴ ,當(dāng)時, .
若,則由題設(shè)得
..……………………13分若,則
.
綜上得. .………………………16分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題滿分16分)
已知函數(shù),且對任意,有.
(1)求;
(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)的取值范圍.
(3)討論函數(shù)的零點個數(shù)?(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三10月階段性測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)為實常數(shù)).
(I)當(dāng)時,求函數(shù)在上的最小值;
(Ⅱ)若方程在區(qū)間上有解,求實數(shù)的取值范圍;
(Ⅲ)證明:
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分) 已知橢圓:的離心率為,分別為橢圓的左、右焦點,若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點時,求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,。
(Ⅰ)求及的值;
(Ⅱ)求函數(shù)在上的解析式;
(Ⅲ)若關(guān)于的方程有四個不同的實數(shù)解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省2009-2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com