已知二次函數(shù)滿足條件 :①對任意x∈R,均有 ②函數(shù)的圖像與y=x相切.
(1)求的解析式;
(2) 若函數(shù),是否存在常數(shù)t (t≥0),當x∈[t,10]時,的值域為區(qū)間D,且D的長度為12-t,若存在,請求出t值,若不存在,請說明理由(注: 的區(qū)間長度為).
解:(1)由①,a(x-4)^2+b(x-4)=a(2-x)^2+b(2-x),∴(2x-6)(-2a+b)=0,b=2a 2分
由②,ax^2+(2a-1)x=0的兩根相等,∴a=1/2,b=1. f(x)=(1/2)x^2+x. 4分
所以g(x)=x2-16x+q+3.
(2)∵0≤t<10,f(x)在區(qū)間[0,8]上是減函數(shù),在區(qū)間[8,10]上是增函數(shù),且其圖象的對稱軸是x=8.
①當0≤t≤6時,在區(qū)間[t,10]上,f(t)最大,f(8)最小,
∴f(t)-f(8)=12-t,即t2-15t+52=0,
解得t=,∴t=;
②當6<t≤8時,在區(qū)間[t,10]上,f(10)最大,f(8)最小,
∴f(10)-f(8)=12-t,解得t=8;
③當8<t<10時,在區(qū)間[t,10]上,f(10)最大,f(t)最小,
∴f(10)-f(t)=12-t,即t2-17t+72=0,
解得t=8(舍去)或t=9.
綜上可知,存在常數(shù)t為,8,9滿足題意.
科目:高中數(shù)學 來源: 題型:
(09年華師一附中期中檢測文)(12分)
已知二次函數(shù)滿足條件:
①對任意,均有;②函數(shù)的圖象與直線相切
(I)求函數(shù)的解析式;
(II)當且僅當時,恒成立,試求的值。查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知二次函數(shù)滿足條件,且方程有等根。
(1)求函數(shù)的解析式;
(2)是否存在實數(shù)使的定義域和值域分別為和,如果存在,求出的值;如果不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分15分)已知二次函數(shù)滿足條件:① ; ② 的最小值為.
(1) 求函數(shù)的解析式; (2) 設數(shù)列的前項積為, 且, 求數(shù)列的通項公式; (3) 在(2)的條件下, 求數(shù)列的前項的和.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆江西省高一10月月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分12分) 已知二次函數(shù)滿足條件,及.
(1)求的解析式;(2)求在上的最大和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆海南省高二下學期期末考試文科數(shù)學試卷(解析版) 題型:解答題
已知二次函數(shù)滿足條件,及.
(1)求的解析式;
(2)求在上的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com