設(shè){an}是正數(shù)數(shù)列,其前n項(xiàng)和Sn滿足Sn=
1
4
(an-1)(an+3).
(1)求a1的值;
(3)求數(shù)列{an}的通項(xiàng)公式;
(5)對(duì)于數(shù)列{bn},Tn為數(shù)列{bn}的前n項(xiàng)和,令bn=
1
sn
,試求Tn的表達(dá)式.
分析:(1)把n=1代入遞推公式sn=
1
4
(an-1)
(an+3)可求a1的值
(2)由Sn=
1
4
(an+1)(an+3)
,可得Sn-1=
1
4
(an-1-1)(an-1+3)(n≥2)

兩式相減結(jié)合an>0的條件整理可得an-an-1=2,從而利用等差數(shù)列的通項(xiàng)公式求出an
(3)由(2)中求出Sn,代入求bn=
1
n(n+2)
,利用裂項(xiàng)求和求出Tn
解答:解:(1)由a1=S1=
1
4
(a1-1)(a1+3)
,及an>0,得a1=3

(2)由Sn=
1
4
(an-1)(an+3)

Sn-1=
1
4
(an-1-1)(an-1+3)
.∴當(dāng)n≥2時(shí),
an=
1
4
(
a
2
n
-
a
2
n-1
)+2(an-an-1)

∴2(an+an-1)=(an+an-1)(an-an-1
∵an+an-1>0∴an-an-1=2,
∴由(1)知,{an}是以3為首項(xiàng),2為公差的等差數(shù)列,∴an=2n+1.

(3)由(2)知Sn=n(n+2)∴bn=
1
Sn
=
1
2
(
1
n
-
1
n+2
)
,
Tn=b1+b2+…+bn
=
1
2
(1-
1
3
+
1
2
-
1
4
++
1
n-1
-
1
n+1
+
1
n
-
1
n+2
)

=
1
2
[
3
2
-
2n+3
(n+1)(n+2)
]

=
3
4
-
2n+3
2(n+1)(n+2)
點(diǎn)評(píng):本題主要考查由和sn求an,運(yùn)用公式an=
S1n=1
Sn-Sn-1n≥2
可轉(zhuǎn)化得數(shù)列項(xiàng)之間的遞推關(guān)系;在數(shù)列的求和方法中裂項(xiàng)求和一直是考查的熱點(diǎn)和重點(diǎn)之一,在運(yùn)用裂項(xiàng)時(shí),兩項(xiàng)相錯(cuò)k時(shí),裂項(xiàng)后乘
1
k
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)的和為Sn,并且對(duì)于所有的自然數(shù)n,存在正數(shù)t,使an與t的等差中項(xiàng)等于Sn與t的等比中項(xiàng).
(1)求 {an}的通項(xiàng)公式;
(2)若n=3時(shí),Sn-2t•an取得最小值,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè){an}是正數(shù)數(shù)列,其前n項(xiàng)和Sn滿足Sn=
1
4
(an-1)(an+3).
(1)求a1的值;
(3)求數(shù)列{an}的通項(xiàng)公式;
(5)對(duì)于數(shù)列{bn},Tn為數(shù)列{bn}的前n項(xiàng)和,令bn=
1
sn
,試求Tn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京期末題 題型:解答題

設(shè){an}是正數(shù)數(shù)列,其前n項(xiàng)和Sn滿足Sn=(an-1)(an+3),
(1)求a1的值;求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)于數(shù)列{bn},令,Tn是數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市宣武區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè){an}是正數(shù)數(shù)列,其前n項(xiàng)和Sn滿足Sn=(an-1)(an+3).
(1)求a1的值;
(3)求數(shù)列{an}的通項(xiàng)公式;
(5)對(duì)于數(shù)列{bn},Tn為數(shù)列{bn}的前n項(xiàng)和,令bn=,試求Tn的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案