(推理)三段論:“①只有船準(zhǔn)時(shí)起航,才能準(zhǔn)時(shí)到達(dá)目的港;②這艘船是準(zhǔn)時(shí)到達(dá)目的港;③所以這艘船是準(zhǔn)時(shí)起航的”中的“小前提”是( )
A.① | B.② | C.①② | D.③ |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
菱形的對(duì)角線相等,正方形是菱形,所以正方形的對(duì)角線相等。在以上三段論的推理中( )
A.大前提錯(cuò)誤 | B.小前提錯(cuò)誤 | C.推理形式錯(cuò)誤 | D.結(jié)論錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題:若整數(shù)系數(shù)的一元二次方程 有有理實(shí)數(shù)根,那么,,中至少有一個(gè)是偶數(shù),下列假設(shè)中正確的是( )
A.假設(shè),,都是偶數(shù) |
B.假設(shè),,都不是偶數(shù) |
C.假設(shè),,至多有一個(gè)是偶數(shù) |
D.假設(shè),,至多有兩個(gè)偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
實(shí)驗(yàn)中學(xué)“數(shù)學(xué)王子”張小明在自習(xí)課上,對(duì)正整數(shù)1,2,3,4, 按如下形式排成數(shù)陣好朋友王大安問他“由上而下第20行中從左到右的第三個(gè)數(shù)是多少”張小明自上而下逐個(gè)排了兩節(jié)課,終于找到了這個(gè)數(shù),聰明的你一定知道這個(gè)數(shù)是( )
A.190 | B.191 | C.192 | D.193 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過程歸納為以下三個(gè)步驟:
①,這與三角形內(nèi)角和為相矛盾,不成立;②所以一個(gè)三角形中不能有兩個(gè)直角;③假設(shè)三角形的三個(gè)內(nèi)角、、中有兩個(gè)直角,不妨設(shè),正確順序的序號(hào)為
A.①②③ | B.③①② | C.①③② | D.②③① |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題“三角形的內(nèi)角中至少有一個(gè)角不大于”時(shí),反設(shè)正確的是
A.假設(shè)三個(gè)內(nèi)角都不大于 | B.假設(shè)三個(gè)內(nèi)角都大于 |
C.假設(shè)三個(gè)內(nèi)角至多有一個(gè)大于 | D.假設(shè)三個(gè)內(nèi)角至多有二個(gè)大于 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2.則它們的面積之比為1:4.類似地,在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積比為( )
A.1:2 | B.1:4 | C.1:6 | D.1:8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,模塊①~⑤均由4個(gè)棱長(zhǎng)為1的小正方體構(gòu)成,模塊⑥由15個(gè)棱長(zhǎng)為1的小正方體構(gòu)成.現(xiàn)從模塊①~⑤中選出三個(gè)放到模塊⑥上,使得模塊⑥成為一個(gè)棱長(zhǎng)為3的大正方體,則下列選擇方案中,能夠完成任務(wù)的為( )
A.模塊①,②,⑤ | B.模塊①,③,⑤ |
C.模塊②,④,⑤ | D.模塊③,④,⑤ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com