已知銳角α、β滿足sinα=
5
5
sin(α-β)=-
10
10
,則β等于( 。
分析:根據(jù)同角三角函數(shù)的基本關(guān)系求出cosα  和cos(α-β) 的值,再利用兩角和差的余弦公式求出cosβ=cos[α-(α-β)]的值.
解答:解:∵銳角α、β滿足sinα=
5
5
,sin(α-β)=-
10
10
,
則 cosα=
2
5
5
,cos(α-β)=
3
10
10

∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinα sin(α-β)
=
2
5
5
3
10
10
+
5
5
•( -
10
10
)
=
2
2
,β=
π
4
,
故選B.
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)到長軸的兩個(gè)端點(diǎn)的距離分別為2+
3
和2-
3

(1)求橢圓的方程;
(2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)如圖,過原點(diǎn)O任意作兩條互相垂直的直線與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)交于P,S,R,Q四點(diǎn),設(shè)原點(diǎn)O到四邊形PQSR一邊的距離為d,試求d=1時(shí)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•盧灣區(qū)二模)(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿足A=2B.
(1)當(dāng)
π
5
<B<
π
4
時(shí),求△ABC的三邊長及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿足A=2B.
(1)當(dāng)數(shù)學(xué)公式時(shí),求△ABC的三邊長及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:盧灣區(qū)二模 題型:解答題

(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿足A=2B.
(1)當(dāng)
π
5
<B<
π
4
時(shí),求△ABC的三邊長及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市盧灣區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿足A=2B.
(1)當(dāng)時(shí),求△ABC的三邊長及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案