【題目】已知定義在上的函數(shù)為增函數(shù),且,則等于( )
A. B. C. 或 D.
【答案】A
【解析】
設(shè)f(1)=t,由題意知t≠0,令x=1,代入f(x)f[f(x)+]=1,得f(t+1)=,令x=t+1代入f(x)f[f(x)+]=1,得f(+)=t=f(1),由在(0,+∞)上的函數(shù)f(x)為單調(diào)函數(shù),得t2﹣t﹣1=0,由此能求出f(1).
設(shè)f(1)=t,由題意知t≠0,
令x=1,代入f(x)f[f(x)+]=1,得f(1)f[f(1)+1]=1,
即f(t+1)=,
令x=t+1代入f(x)f[f(x)+]=1得,f(t+1)f[f(t+1)+]=1,
∴f(+)=t=f(1),
∵在(0,+∞)上的函數(shù)f(x)為單調(diào)函數(shù),
∴+=1,化簡得t2﹣t﹣1=0,
解得,t=或t=.
∵定義在(0,+∞)上的函數(shù)f(x)為增函數(shù),且f(x)f(f(x)+)=1,
∴f(1)=.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱中,為的中點.
(1)求證:;
(2)若點為四邊形內(nèi)部及其邊界上的點,且三棱錐的體積為三棱柱體積的,試在圖中畫出點的軌跡,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)y=f(x)滿足f(3)=0,且當(dāng)x>0時,不等式f(x)>﹣xf′(x)恒成立,則函數(shù)g(x)=xf(x)+lg|x+1|的零點的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù));以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標方程;
(Ⅱ)若把曲線各點的橫坐標伸長到原來的倍,縱坐標變?yōu)樵瓉淼?/span>,得到曲線,求曲線的方程;
(Ⅲ)設(shè)為曲線上的動點,求點到曲線上點的距離的最小值,并求此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M:: (a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(1)求橢圓方程;
(2)當(dāng)直線l的傾斜角為45°時,求線段CD的長;
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運動員自出發(fā)點出發(fā)進入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運動員只有在摔倒或到達終點時才停止滑行,現(xiàn)在用表示該運動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).
(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;
(2)求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A是拋物線M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點,且點A到拋物線M焦點F的距離為a,若拋物線M上一動點到其準線與到點C的距離之和的最小值為2a,O為坐標原點,則直線OA被圓C所截得的弦長為( )
A.2
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列的前項和,且.
(1)求;
(2)令,計算和,由此推測數(shù)列是等差數(shù)列還是等比數(shù)列,證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com