(2008•佛山二模)當(dāng)前,國家正在分批修建經(jīng)濟(jì)適用房以解決低收入家庭住房緊張問題.甲、乙、丙三個社區(qū)現(xiàn)分別有低收入家庭150戶、200戶、100戶,若第一批經(jīng)濟(jì)適用房中有90套用于解決這三個社區(qū)中90戶低收入家庭的住房問題,現(xiàn)采用分層抽樣的方法決定各社區(qū)的戶數(shù),則應(yīng)從甲社區(qū)中抽取的低收入家庭的戶數(shù)為( 。
分析:先求出每個個體被抽到的概率,用甲社區(qū)的低收入家庭數(shù)量乘以每個個體被抽到的概率,即得應(yīng)從甲社區(qū)中抽取低收入家庭的戶數(shù).
解答:解:每個個體被抽到的概率等于
90
150+200+100
=
1
5

甲社區(qū)有150戶低收入家庭,故應(yīng)從甲社區(qū)中抽取低收入家庭的戶數(shù)為 150×
1
5
=30,
故選B.
點評:本題主要考查分層抽樣的定義和方法,用每層的個體數(shù)乘以每個個體被抽到的概率等于該層應(yīng)抽取的個體數(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)
的圖象上一個最高點的坐標(biāo)為(
π
12
,3)
,與之相鄰的一個最低點的坐標(biāo)為(
12
,-1)

(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)求f(x)在x=
π
6
處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)已知函數(shù)f(x)的自變量的取值區(qū)間為A,若其值域區(qū)間也為A,則稱A為f(x)的保值區(qū)間.
(1)求函數(shù)f(x)=x2形如[n,+∞)(n∈R)的保值區(qū)間;
(2)函數(shù)g(x)=|1-
1x
|(x>0)
是否存在形如[a,b](a<b)的保值區(qū)間?若存在,求出實數(shù)a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)已知正項等差數(shù)列{an}的前n項和為Sn,其中a1≠a2,am、ak、ah都是數(shù)列{an}中滿足ah-ak=ak-am的任意項.
(Ⅰ)證明:m+h=2k;
(Ⅱ)證明:Sm•Sh≤Sk2;
(III)若
Sm
、
Sk
、
Sh
也成等差數(shù)列,且a1=2,求數(shù)列{
1
Sn-S1
}(n∈N*,n≥3)
的前n項和Tn
5
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)在△ABC中,若
AC
BC
=1
,
AB
BC
=-2
,則|
BC
|
=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)已知A為xOy平面內(nèi)的一個區(qū)域.
命題甲:點(a,b)∈{(x,y)|
0≤x≤π
0≤y≤sinx
;命題乙:點(a,b)∈A.如果甲是乙的充分條件,那么區(qū)域A的面積的最小值是( 。

查看答案和解析>>

同步練習(xí)冊答案