已知函數(shù)f(x)=ax(a>0且a≠1),若f(1)=2,則函數(shù)f(x)的解析式
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意知f(1)=a=2;從而求函數(shù)的解析式.
解答: 解:由題意,f(1)=a=2;
故f(x)=2x
故函數(shù)f(x)的解析式為f(x)=2x;
故答案為:f(x)=2x
點(diǎn)評:本題考查了函數(shù)解析式的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“|x-1|<2成立”是“x(x-3)<0成立”的( 。l件.
A、充要
B、充分不必要
C、必要不充分
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論函數(shù)f(x)=(
1
5
)
x2-2x
的單調(diào)性,并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位200名職工中,年齡在50歲以上占20%,40~50歲占30%,40歲以下占50%;現(xiàn)要從中抽取40名職工作樣本.若用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是①;若用分層抽樣方法,則40歲以下年齡段應(yīng)抽、谌耍佗趦商帒(yīng)填寫的數(shù)據(jù)分別為( 。
A、82,20B、37,20
C、37,4D、37,50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=lg(x+
x2+a
)是定義在R上奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U=R,A={x|y=
log2(x-1)
},B={y|y=(
1
2
x+1,-2≤x≤-1},D={x|x<a-1}.
(1)求A∩B;  
(2)若D?∁UA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,若(a+1)i=b+2i(a∈R,b∈R),則復(fù)數(shù)a+bi的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PD⊥平面ABCD,AD⊥CD,AD∥BC,PD=DC=BC;
(Ⅰ)求異面直線PB與AD所成角的余弦值; 
(Ⅱ)若AD=
1
2
BC,E為PC的中點(diǎn),求證:DE∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(a+x)-ln(a-x)(a>0).
(Ⅰ)曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,求a的值;
(Ⅱ)當(dāng)x≥0時(shí),f(x)≥2x+
2x3
3
,試求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案