【題目】已知圓,點(diǎn)是直線上的一動(dòng)點(diǎn),過(guò)點(diǎn)作圓M的切線,切點(diǎn)為、

)當(dāng)切線PA的長(zhǎng)度為時(shí),求點(diǎn)的坐標(biāo);

)若的外接圓為圓,試問:當(dāng)運(yùn)動(dòng)時(shí),圓是否過(guò)定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;

)求線段長(zhǎng)度的最小值.

【答案】;(;(AB有最小值

【解析】

試題()求點(diǎn)的坐標(biāo),需列出兩個(gè)獨(dú)立條件,根據(jù)解方程組解:由點(diǎn)是直線上的一動(dòng)點(diǎn),得,由切線PA的長(zhǎng)度為,解得)設(shè)P2b,b),先確定圓的方程:因?yàn)?/span>∠MAP90°,所以經(jīng)過(guò)A、P、M三點(diǎn)的圓MP為直徑,其方程為:,再按b整理:解得,所以圓過(guò)定點(diǎn))先確定直線方程,這可利用兩圓公共弦性質(zhì)解得:由圓方程為 ,相減消去x,y平方項(xiàng)得圓方程與圓相交弦AB所在直線方程為:,相交弦長(zhǎng)即:

,當(dāng)時(shí),AB有最小值

試題解析:()由題可知,圓M的半徑r2,設(shè)P2b,b),

因?yàn)?/span>PA是圓M的一條切線,所以∠MAP90°,

所以MP,解得

所以4

)設(shè)P2bb),因?yàn)?/span>∠MAP90°,所以經(jīng)過(guò)A、PM三點(diǎn)的圓MP為直徑,

其方程為:

, 7

解得,所以圓過(guò)定點(diǎn)9

)因?yàn)閳A方程為

,即

得圓方程與圓相交弦AB所在直線方程為:

11

點(diǎn)M到直線AB的距離13

相交弦長(zhǎng)即:

當(dāng)時(shí),AB有最小值16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地服務(wù)民眾,某共享單車公司通過(guò)向共享單車用戶隨機(jī)派送每張面額為0元,1元,2元的三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得1元獎(jiǎng)券、獲得2元獎(jiǎng)券的概率分別是0.5、0.2,且各次獲取騎行券的結(jié)果相互獨(dú)立.

(I)求用戶騎行一次獲得0元獎(jiǎng)券的概率;

(II)若某用戶一天使用了兩次該公司的共享單車,記該用戶當(dāng)天獲得的騎行券面額之和為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列。

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是平行四邊形,平面平面,,,,,的中點(diǎn).

1)求證:平面;

2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5 ,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面為矩形的四棱錐中,,,且,其中分別是線段的中點(diǎn)。

1)證明:平面

2)證明:平面

3)求:直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)f(x)ax2bx.

(1)1≤f(1)≤2,2≤f(1)≤4,求f(2)的取值范圍;

(2)當(dāng)b1時(shí),若對(duì)任意x[0,1],-1≤f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:

;

②直線平面

③平面平面;

④異面直線所成角為;

⑤直線與平面所成角的余弦值為.

其中正確的有_______(把所有正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺六寸意思是:一年有二十四個(gè)節(jié)氣,每相鄰兩個(gè)節(jié)氣之間的日影長(zhǎng)度差為分;且“冬至”時(shí)日影長(zhǎng)度最大,為1350分;“夏至”時(shí)日影長(zhǎng)度最小,為160分則“立春”時(shí)日影長(zhǎng)度為  

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案