已知
OA
=(3,1),
OB
=(0,4),
OC
=(x,4),且
AC
AB
,則x=
 
考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:利用向量垂直的性質(zhì)求解.
解答: 解:∵
OA
=(3,1),
OB
=(0,4),
OC
=(x,4),
AC
=(x-3,3),
AB
=(-3,3)
AC
AB
,
AC
AB
=-3(x-3)+3×3=0,
解得x=6.
故答案為:6.
點評:本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量垂直的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=8,a3=4.求數(shù)列{an}的通項公式an及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=-2x,x∈(2,3]},B={x|x2+3x-a(a+3)>0}
(1)當a=4時,求A∩B;
(2)若A⊆B,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)滿足以下條件①f(x-1)=f(5-x)②最小值為-8  ③f(1)=-6
(1)求f(x)的解析式;
(2)畫出二次函數(shù)f(x)圖象,并根據(jù)函數(shù)圖象求函數(shù)f(x)在區(qū)間(-1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸,可得這個幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f1(x)=xex,且fn(x)=f′n-1(x)(n∈N,n≥2),則f2014(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,4,x},B={1,x2},且A∪B={1,4,x},則滿足條件的實數(shù)x為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當.0<k<0.5時,直線l1:kx-y=k-1與直線l2:ky-x=2k的交點在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=3x2-1在x=x0處的切線與曲線y=1-2x3在x=x0處的切線互相平行,則x0的值為
 

查看答案和解析>>

同步練習(xí)冊答案