設(shè),.
(Ⅰ)當時,求曲線處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對任意的,都有成立,求實數(shù)的取值范圍.

(1);(2);(3).

解析試題分析:本題考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調(diào)性、最值等基礎(chǔ)知識,考查函數(shù)思想和轉(zhuǎn)化思想,考查綜合分析和解決問題的能力.第一問,將代入得到解析式,求代入得到切線的斜率,再將代入到中得到切點的縱坐標,利用點斜式求出切線方程;第二問,先將問題轉(zhuǎn)化為,進一步轉(zhuǎn)化為求函數(shù)的最大值和最小值問題,對求導,通過畫表判斷函數(shù)的單調(diào)性和極值,求出最值代入即可;第三問,結(jié)合第二問的結(jié)論,將問題轉(zhuǎn)化為恒成立,進一步轉(zhuǎn)化為恒成立,設(shè)出新函數(shù),求的最大值,所以即可.
試題解析:(1)當時,,,,,
所以曲線處的切線方程為;         2分
(2)存在,使得成立等價于:,
考察,,












 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若在區(qū)間單調(diào)遞增,求的最小值;
(2)若,對,使成立,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當時,試討論的單調(diào)性;
(Ⅱ)設(shè),當時,若對任意,存在,使,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導函數(shù)的圖象如圖,f(x)=6lnx+h(x)

(1)求f(x)在x=3處的切線斜率;
(2)若f(x)在區(qū)間(m,m+)上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)若對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)的值;
(Ⅲ)設(shè),求在區(qū)間上的最小值.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知x=1是函數(shù)的一個極值點,
(Ⅰ)求a的值;
(Ⅱ)當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當時,恒成立,求實數(shù)的取值范圍;
(Ⅱ)若對一切,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求處的切線方程;
(2)若內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù).
(1)求的單調(diào)區(qū)間及最大值;
(2)恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案