精英家教網 > 高中數學 > 題目詳情
已知定義域為R的函數f(x)滿足;f(x+y)=f(x)f(y),且f(3)>1.
(1)求f(0);
(2)求證:f(-4)<1.
分析:(1)令已知等式f(x+y)=f(x)f(y)中的x=0,y=3,然后兩邊同除以f(3)求出f(0)的值.
(2)先將f(3)用f(1)表示,據f(3)的范圍求出f(1)的范圍,再利用已知等式將f(4)用f(1)表示求出f(4)的范圍,利用已知條件得到f(-4)與f(4)的關系,進一步求出f(-4)的范圍.
解答:解:(1)令x=0,y=3得
f(3)=f(0)f(3)
∵f(3)>1
∴f(0)=1
(2)證明:∵f(x+y)=f(x)f(y),
∴f(3)=[f(1)]3>1
∴f(1)>1
∴f(4)=[f(1)]4>1
∵f(4-4)=f(4)f(-4)
f(-4)=
1
f(4)
<1
點評:解決抽象函數的性質問題,一般利用所給的等式通過觀察,給等式中的未知數賦值,求出需要的函數值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數f(x)在(1,+∞)上為減函數,且函數y=f(x+1)為偶函數,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)在(4,+∞)上為減函數,且函數y=f(x)的對稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)=
-2x+a2x+1
是奇函數
(1)求a值;
(2)判斷并證明該函數在定義域R上的單調性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數k的取值范圍;
(4)設關于x的函數F(x)=f(4x-b)+f(-2x+1)有零點,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)滿足f(4-x)=-f(x),當x<2時,f(x)單調遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習冊答案