設(shè)直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).
(1)證明:a2
3k2
3+k2

(2)若
.
AC
=2
.
CB
,求△OAB的面積取得最大值時的橢圓方程.
分析:(1)把直線l的方程代人橢圓方程,由直線與橢圓相交于A、B兩個不同的點(diǎn)可得△>0,解出即可證明;
(2)設(shè)A(x1,y1),B(x2,y2).利用根與系數(shù)的關(guān)系及向量相等得到y(tǒng)1,y2的關(guān)系及可用k來表示,再利用三角形的面積公式∴△OAB的面積 S=
1
2
|OC|•|y2-y1|
及基本不等式的性質(zhì)即可得出取得面積最大值時的k的值,進(jìn)而得到a的值.
解答:(1)證明:由y=k(x+1)(k≠0)得x=
1
k
y-1

并代入橢圓方程3x2+y2=a2消去x得(3+k2)y2-6ky+3k2-k2a2=0   ①
∵直線l與橢圓相交于兩個不同的點(diǎn)得△=36k2-4(3+k2)(3k2-k2a2)>0,
a2
3k2
3+k2

(2)解:設(shè)A(x1,y1),B(x2,y2).
由①,得y1+y2=
6k
3+k2
,②
AC
=2
CB
,而點(diǎn)C(-1,0),
∴(-1-x1,-y1)=2(x2+1,y2),
得y1=-2y2代入②,得y2=
-6k
3+k2
,③
∴△OAB的面積 S=
1
2
|OC|•|y2-y1|
=
3
2
|y2|
=
9|k|
3+k2
9|k|
2
3
|k|
=
3
3
2
,當(dāng)且僅當(dāng)k2=3,即k=±
3
時取等號.
把k的值代人③可得y2
3

k=
3
y2=-
3
k=-
3
y2=
3
這兩組值分別代入①,均可解出a2=15.
∴△OAB的面積取得最大值的橢圓方程是3x2+y2=15.
點(diǎn)評:本題綜合考查了直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、△>0、向量相等、三角形的面積計算公式、基本不等式的性質(zhì)等基礎(chǔ)知識與基本技能,考查了推理能力和計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:y=k(x+1)與橢圓x2+3y2=a2(a>0)相交于A、B兩個不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).
(Ⅰ)證明:a2
3k2
1+3k2
;
(Ⅱ)若
AC
=2
CB
,△OAB的面積取得最大值時橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A,B兩個不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).
(1)證明:a2
3k2
3+k2

(2)若k=
3
AC
=2
CB
,求△OAB的面積及橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-
3
2
,0),B(
3
2
,0)為平面內(nèi)兩定點(diǎn),動點(diǎn)P滿足|PA|+|PB|=2.
(1)求動點(diǎn)P的軌跡方程;
(2)設(shè)直線l:y=k(x+
3
2
)(k>0)與(1)中點(diǎn)P的軌跡交于M,N兩點(diǎn),求△BMN的最大面積及此時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市東城區(qū)示范校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)直線l:y=k(x+1)與橢圓x2+3y2=a2(a>0)相交于A、B兩個不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).
(Ⅰ)證明:;
(Ⅱ)若,△OAB的面積取得最大值時橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案