【題目】已知函數(shù)
(I)討論函數(shù)的單調(diào)性;
(II)當(dāng)時,證明(其中e為自然對數(shù)的底數(shù))
【答案】(I)答案不唯一,具體見解析(II)證明見解析;
【解析】
(I)求導(dǎo),分及,討論與0的關(guān)系,得出函數(shù)的單調(diào)性;
(II) 依題意,只需證明,令,利用導(dǎo)數(shù)求其最小值大于0即可得證.
(I)由題意,函數(shù)的定義域為,
,
當(dāng)時,;
當(dāng)時,;
當(dāng)時,或;;
當(dāng)時,;
當(dāng)時,或;.
綜上討論知:當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時,在,上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時,在上單調(diào)遞增;
當(dāng)時,在,上單調(diào)遞增,在上單調(diào)遞減.
(II)當(dāng)時,由,只需證明,
令,.
設(shè),則.
當(dāng)時,,單調(diào)遞減;
當(dāng)時,,單調(diào)遞增,
∴當(dāng)時,取得唯一的極小值,也是最小值.
的最小值是成立.
故成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中e是自然對數(shù)的底數(shù).
(1)若函數(shù)的極大值為,求實數(shù)a的值;
(2)當(dāng)a=e時,若曲線與在處的切線互相垂直,求的值;
(3)設(shè)函數(shù),若>0對任意的x(0,1)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,、分別是其左、右焦點,過的直線與橢圓交于兩點,且橢圓的離心率為,的周長等于.
(1)求橢圓的方程;
(2)當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)突如其來的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國各地的白衣天使走上戰(zhàn)場的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)、、三名護士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護士被選在第一醫(yī)院工作的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)上購物的普及,傳統(tǒng)的實體店遭受到了強烈的沖擊,某商場實體店近九年來的純利潤如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
時間代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
實體店純利潤(千萬) | 2 | 2.3 | 2.5 | 2.9 | 3 | 2.5 | 2.1 | 1.7 | 1.2 |
根據(jù)這9年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.254;根據(jù)后5年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.985;
(1)如果要用線性回歸方程預(yù)測該商場2019年實體店純利潤,現(xiàn)有兩個方案:
方案一:選取這9年的數(shù)據(jù),進行預(yù)測;
方案二:選取后5年的數(shù)據(jù)進行預(yù)測.
從生活實際背景以及相關(guān)性檢驗的角度分析,你覺得哪個方案更合適.
附:相關(guān)性檢驗的臨界值表:
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
7 | 0.666 | 0.798 |
(2)某機構(gòu)調(diào)研了大量已經(jīng)開店的店主,據(jù)統(tǒng)計,只開網(wǎng)店的占調(diào)查總?cè)藬?shù)的,既開網(wǎng)店又開實體店的占調(diào)查總?cè)藬?shù)的,現(xiàn)以此調(diào)查統(tǒng)計結(jié)果作為概率,若從上述統(tǒng)計的店主中隨機抽查了5位,求只開實體店的人數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若在上恒成立,求實數(shù)的取值范圍;
(3)在(2)的條件下(提示:可以用第(2)問的結(jié)論),對任意的,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,為正三角形,為棱的中點,,,平面平面
(1)求證:平面平面;
(2)若是棱上一點,與平面所成角的正弦值為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵人機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) |
(1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表
潛伏期天 | 潛伏期天 | 總計 | |
歲以上(含歲) | |||
歲以下 | |||
總計 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:
,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com