設(shè)數(shù)列{an}滿足a1=2,an+1=4an-3n+1,n∈N*,則數(shù)列{an}的前n項(xiàng)和為
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:本題可根據(jù)已知條件構(gòu)造新數(shù)列,由新數(shù)列的通項(xiàng)公式得到數(shù)列{an}的通項(xiàng)公式,再對(duì)數(shù)列{an}用進(jìn)行分組求和的方法求和,得到本題結(jié)論.
解答: 解:∵an+1=4an-3n+1,
∴an+1-(n+1)=4(an-n),
∵a1=2,
∴a1-1=1,
∴數(shù)列{an-n}是以1為首項(xiàng),公比為4的等比數(shù)列.
an-n=1×4n-1=4n-1
an=4n-1+n
Sn=(1+1)+(4+2)+(42+3)++(4n-1+n)
=(1+4+42+…+4n-1)+(1+2+3+…+n)
=
1(1-4n)
1-4
+
n(n+1)
2

=
n(n+1)
2
+
4n-1
3

故應(yīng)填
n(n+1)
2
+
4n-1
3
點(diǎn)評(píng):本題考查了等比數(shù)列的定義、通項(xiàng)公式及前n項(xiàng)和公式,用到了構(gòu)造新數(shù)列的辦法求通項(xiàng)公式,還用了分組求和的方法求前n項(xiàng)的和.本題有一定的維度,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≥4,y≥0,x-2y≥0},若向區(qū)域Ω內(nèi)隨機(jī)投一點(diǎn)P,則點(diǎn)P落在區(qū)域A內(nèi)的概率為(  )
A、
1
3
B、
2
9
C、
1
9
D、
4
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
,
b
滿足|
a
|=1,|
b
|=2,且(
a
-
b
)⊥
a
,則
a
b
的夾角為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2).
(1)求函數(shù)f(x)的解析式及x0的值;
(2)在△ABC中,角A,B,C成等差數(shù)列,求f(x)在[B,x0)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠A為直角,AB邊所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在直線AC上,斜邊中點(diǎn)為M(2,0).
(1)求BC邊所在直線的方程;
(2)若動(dòng)圓P過點(diǎn)N(-2,0),且與Rt△ABC的外接圓相交所得公共弦長為4,求動(dòng)圓P中半徑最小的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4cosxsin(x+
π
6
)-1.
(Ⅰ)求f(x)的最小正周期和最大值及取得最大值的身變量x的集合;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
sin(
π
2
+x)sin(x+π)cos(x+
2
)
cos(x-
π
2
)sin(
2
-x)cos(2π-x)

(1)若f(x)=1,求x的取值構(gòu)成的集合.
(2)若f(x)=2,求sinxcosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x-a
+
λ
x-b
(a,b,λ為實(shí)常數(shù)).
(1)若λ=-1,a=1.
①當(dāng)b=-1時(shí),求函數(shù)f(x)的圖象在點(diǎn)(
2
,f(
2
))處的切線方程;
②當(dāng)b<0時(shí),求函數(shù)f(x)在[
1
3
1
2
]上的最大值.
(2)若λ=1,b<a,求證:不等式f(x)≥1的解集構(gòu)成的區(qū)間長度D為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“函數(shù)y=f(x)的圖象關(guān)于點(diǎn)P(a、b)成中心對(duì)稱圖形”的充要條件為“函數(shù)y=f(x+a)-b是奇函數(shù)”.
(1)試判斷命題p的真假?并說明理由;
(2)設(shè)函數(shù)g(x)=x3-3x2,求函數(shù)g(x)圖象對(duì)稱中心的坐標(biāo);
(3)試判斷“存在實(shí)數(shù)a和b,使得函數(shù)y=f(x+a)-b是偶函數(shù)”是“函數(shù)y=f(x)的圖象關(guān)于某直線成軸對(duì)稱圖象”成立的什么條件?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案