Rt△ABC中,∠C=90°,CD⊥AB于D,若BD∶AD=3∶2,則△ACD與△CBD的相似比為(  )
A.2∶3 B.3∶2C.9∶4D.∶3
D
如圖Rt△ABC中,由CD⊥AB及射影定理知,
CD2=AD·BD,即,
又∵∠ADC=∠BDC=90°,
∴△ACD∽△CBD.
∵BD∶AD=3∶2
∴令BD=3t,AD=2t,
則CD2=6t2,即CD=t,∴
故△ACD與△CBD的相似比為∶3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一塊直角三角形木板,如圖所示,∠C=90°,AB=5 cm,BC=3 cm,AC=4 cm,根據(jù)需要,要把它加工成一個面積最大的正方形木板,設(shè)計一個方案,應(yīng)怎樣裁才能使正方形木板面積最大,并求出這個正方形木板的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)

(1)若橢圓的長軸長為4,離心率為
3
2
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,是等腰三角形,是底邊延長線上一點,
,則腰長=        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,則BD的長為________,AB的長為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是圓O的直徑,延長AB至C,使BC=2OB,CD是圓O的切線,切點為D,連接AD、BD,則的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(選修4-1:幾何證明選講)如圖,PA是圓O的切線,切點為A,PO交圓O于B,C兩點,,則=_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在圓O中,直徑AB與弦CD垂直,垂足為E,EF⊥DB,垂足為F,若AB=6,AE=1,則DF·DB=        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,D、E分別是△ABC的邊AB、AC上的點,DE∥BC,
=2,那么△ADE與四邊形DBCE的面積比是(  )

A.             B.          C.         D. 

查看答案和解析>>

同步練習(xí)冊答案