某桶裝水經(jīng)營部每天的房租,人員工資等固定成本為200元,每桶水的進(jìn)價是5元.銷售單價與日均銷售的關(guān)系如下表所示
銷售單價(元) 6 7 8 9 10 11 12
日均銷售量(桶) 480 440 400 360 320 280 240
設(shè)在進(jìn)價基礎(chǔ)上增加x元后,日均銷售利潤為y元.請根據(jù)以上數(shù)據(jù)作出分析,這個經(jīng)營部怎樣定價才能獲得最大利潤?
分析:(1)若設(shè)定價在進(jìn)價的基礎(chǔ)上增加x元,日銷售利潤為y元,則日均銷售量P=480-40(x-1)=520-40x  (0<x<13)
(2)y=(520-40x)x-200=-40x2+520x-200   (0<x<13)
整理函數(shù)y,可得x取何值時,y有最大值,即獲得最大利潤.
解答:解:(1)銷售單價每增加1元,日均銷售量減少40桶.設(shè)在進(jìn)價基礎(chǔ)上增加x元后,日均銷售利潤為y元,
這時日均銷售量P=480-40(x-1)=520-40x  (0<x<13)
(2)y=(520-40x)x-200=-40x2+520x-200   (0<x<13)
易知,當(dāng)x=6.5時,y有最大值.即這個經(jīng)營部每桶定價11.5元才能獲得最大利潤.
點(diǎn)評:本題考查了二次函數(shù)模型的應(yīng)用,二次函數(shù)求最值時,通常考慮對稱軸是否在定義域內(nèi),若在,對稱軸對應(yīng)的函數(shù)值是最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為420元,每桶水的進(jìn)價是4元,銷售單價x元/桶與日銷售量m(桶)的關(guān)系為m=-40x+720.這個經(jīng)營部定價每桶
11
11
元時,每天獲得的利潤最大?最大利潤是
1760
1760
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價為4元,銷售單價與日均銷售量的關(guān)系如下表所示:
銷售單價(元) 5 6 7 8 9 10 11
日均銷售量(桶) 480 440 400 360 320 280 240
請根據(jù)以上數(shù)據(jù)作出分析,這個經(jīng)營部怎樣定價才能獲得最大利潤?請說明理由.(▲注:最后定價只能取整數(shù)元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價為5元,當(dāng)銷售單價為6元時,日均銷售440桶,銷售單價每提高1元,日均銷售量減少40桶.其關(guān)系如下表所示:
x(銷售單價/元) 6 7 8 9 10 11 12
y(日均銷售量/桶) 440 400 360 320 280 240 200
請問:這個經(jīng)營部如何定價才能獲取最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價為5元,銷售單價與日均銷售量的關(guān)系如下表所示:
銷售單價/元 6 7 8 9 10 11 12
日均銷售量/桶 480 440 400 360 320 280 240
(I)建立利潤關(guān)于銷售單價的函數(shù)解析式;
(II)這個經(jīng)營部怎樣定價才能獲得最大利潤.

查看答案和解析>>

同步練習(xí)冊答案