(本小題滿分12分)已知橢圓,離心率為的橢圓經(jīng)過點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的一個(gè)焦點(diǎn)且互相垂直的直線分別與橢圓交于和,是否存在常數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
(1)(2)存在實(shí)數(shù),使得.理由見解析
【解析】
試題分析:(1)由題可知,即,
由此得,故橢圓方程是,
將點(diǎn)的坐標(biāo)代入,得,解得,
故橢圓方程是. ……4分
(2)問題等價(jià)于,即是否是定值問題.
橢圓的焦點(diǎn)坐標(biāo)是,不妨取焦點(diǎn),
當(dāng)直線的斜率存在且不等于零時(shí),
設(shè)直線的斜率為,則直線的方程是,
代入橢圓方程并整理得
設(shè),則. ……6分
根據(jù)弦長公式,
=
== ……8分
以代換,得 ……9分
所以
即 ……10分
當(dāng)直線的斜率不存在或等于零時(shí),
一個(gè)是橢圓的長軸長,一個(gè)是通徑長度,
此時(shí),即.
綜上所述,故存在實(shí)數(shù),使得. ……12分
考點(diǎn):本小題主要考查橢圓標(biāo)準(zhǔn)方程的求解和直線與橢圓的位置關(guān)系以及弦長公式的應(yīng)用,考查學(xué)生的轉(zhuǎn)化能力和運(yùn)算能力.
點(diǎn)評(píng):圓錐曲線問題一般難度較大,要仔細(xì)分析,仔細(xì)運(yùn)算,另外設(shè)直線方程時(shí),要考慮到直線的斜率是否存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com