已知f(x)=ln(x+1)-
2x
的零點在區(qū)間(k,k+1)(k∈N)上,則k的值為
 
分析:先畫出y=ln(x+1)與y=
1
x
的圖象,然后關系交點所處的區(qū)間,比較區(qū)間端點的函數(shù)值是否大小發(fā)生變化,總而確定零點所在區(qū)間.
解答:解:觀察y=ln(x+1)與y=
1
x
的圖象交點位置
精英家教網(wǎng)
∵ln2<1,ln3>
1
2

f(x)=ln(x+1)-
2
x
的零點在區(qū)間(1,2)上,故k=1
故答案為1.
點評:本題主要考查了函數(shù)的零點問題,以及對數(shù)函數(shù)與反比例函數(shù)的圖象,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ln(x2+1),g(x)=(
1
2
)x-m
,若?x1∈[0,3],?x2∈[1,2],使得f(x1)≥g(x2),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分13分)

已知f(x)=ln(1+x2)+ax(a≤0)。

(1)討論f(x)的單調(diào)性。

(2)證明:(1+)(1+)…(1+)<e (n∈N*,n≥2,其中無理數(shù)e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆福建省廈門外國語學校高三上學期11月月考理科數(shù)學卷 題型:解答題

(本小題滿分14分)已知f(x)=ln(1+x)-x.
(Ⅰ)求f(x)的最大值;
(Ⅱ)數(shù)列{an}滿足:an+1= 2f' (an) +2,且a1=2.5,= bn,
⑴數(shù)列{ bn+}是等比數(shù)列    ⑵判斷{an}是否為無窮數(shù)列。
(Ⅲ)對nN*,用⑴結(jié)論證明:ln(1++)<;

查看答案和解析>>

科目:高中數(shù)學 來源:模擬題 題型:解答題

已知f(x)=ln(x+2)-x2+bx+c,
(1)若函數(shù)f(x)在x=1處的切線與直線3x+7y+2=0垂直,且f(-1)=0,求函數(shù)f(x)的解析式;
(2)若f(x)在區(qū)間[0,2]上單調(diào)遞減,求b的取值范圍.

查看答案和解析>>

同步練習冊答案