【題目】為迎接夏季旅游旺季的到來,少林寺單獨設(shè)置了一個專門安排游客住宿的客棧,寺廟的工作人員發(fā)現(xiàn)為游客準備的一些食物有些月份剩余不少,浪費很嚴重,為了控制經(jīng)營成本,減少浪費,就想適時調(diào)整投入.為此他們統(tǒng)計每個月入住的游客人數(shù),發(fā)現(xiàn)每年各個月份來客棧入住的游客人數(shù)會發(fā)生周期性的變化,并且有以下規(guī)律:
①每年相同的月份,入住客棧的游客人數(shù)基本相同;
②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;
③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達到最多.
(1)試用一個正弦型三角函數(shù)描述一年中入住客棧的游客人數(shù)y與月x份之間的關(guān)系;
(2)請問哪幾個月份要準備400份以上的食物?
【答案】(1)f(x)=200sin(x)+300;(2)只有6,7,8,9,10五個月份要準備400份以上的食物.
【解析】
試題(1)根據(jù)①,可知函數(shù)的周期是12;根據(jù)②可知,f(2)最小,f(8)最大,且f(8)﹣f(2)=400;根據(jù)③可知,f(x)在[2,8]上單調(diào)遞增,且f(2)=100,由此可得函數(shù)解析式;
(2)由條件知,200sin(x)+300≥400,結(jié)合x∈N*,1≤x≤12,即可得到結(jié)論.
解:(1)設(shè)該函數(shù)為f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<|φ|<π)
根據(jù)①,可知函數(shù)的周期是12,∴=12,∴ω=;
根據(jù)②可知,f(2)最小,f(8)最大,且f(8)﹣f(2)=400,故該函數(shù)的振幅為200;
根據(jù)③可知,f(x)在[2,8]上單調(diào)遞增,且f(2)=100,∴f(8)=500
∴,∴
∵f(2)最小,f(8)最大,
∴sin(2×+φ)=﹣1,sin(8×+φ)=1,
∵0<|φ|<π,
∴φ=
∴f(x)=200sin(x)+300;
(2)由條件知,200sin(x)+300≥400,化簡可得sin(x),
∴2kπ+≤x≤2kπ+,k∈Z
∴12k+6≤x≤12k+10,k∈Z
∵x∈N*,1≤x≤12
∴x=6,7,8,9,10
∴只有6,7,8,9,10五個月份要準備400份以上的食物.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)是定義在R上的偶函數(shù),f(x+1)為奇函數(shù),f(0)=0,當x∈(0,1]時,f(x)=log2x,則在區(qū)間(8,9)內(nèi)滿足方f(x)程f(x)+2=f( )的實數(shù)x為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司年會舉行抽獎活動,每位員工均有一次抽獎機會.活動規(guī)則如下:一只盒子里裝有大小相同的6個小球,其中3個白球,2個紅球,1個黑球,抽獎時從中一次摸出3個小球,若所得的小球同色,則獲得一等獎,獎金為300元;若所得的小球顏色互不相同,則獲得二等獎,獎金為200元;若所得的小球恰有2個同色,則獲得三等獎,獎金為100元.
(1)求小張在這次活動中獲得的獎金數(shù)的概率分布及數(shù)學(xué)期望;
(2)若每個人獲獎與否互不影響,求該公司某部門3個人中至少有2個人獲二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果:
表1:男、女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
男生人數(shù) | 5 | 25 | 30 | 25 | 15 |
女生人數(shù) | 10 | 20 | 40 | 20 | 10 |
(Ⅰ)若該中學(xué)共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(Ⅱ)完成下表,并回答能否有90%的把握認為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”?
上網(wǎng)時間少于60分鐘 | 上網(wǎng)時間不少于60分鐘 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:公式,其中
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面為正方形的四棱錐S﹣ABCD中,SA=SB=SC=SD,異面直線AD與SC所成的角為60°,AB=2.則四棱錐S﹣ABCD的外接球的表面積為( )
A.6π
B.8π
C.12π
D.16π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,四邊形ACEF為平行四邊形,設(shè)BD與AC相交于點G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)證明:平面ACEF⊥平面ABCD;
(2)若AE與平面ABCD所成角為60°,求二面角B﹣EF﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|2x﹣a|(x∈R).
(1)當a>﹣2時,函數(shù)f(x)的最小值為4,求實數(shù)a的值;
(2)若對于任意,x∈[﹣1,4],不等式f(x)≥3x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點F(1,0),橢圓Γ的左,右頂點分別為M,N.過點F的直線l與橢圓交于C,D兩點,且△MCD的面積是△NCD的面積的3倍.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)若CD與x軸垂直,A,B是橢圓Γ上位于直線CD兩側(cè)的動點,且滿足∠ACD=∠BCD,試問直線AB的斜率是否為定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com