如圖,在正方形ABCD中,E,F(xiàn)分別為線段AD,BC上的點,∠ABE=20°,∠CDF=30°.將△ABE繞直線BE、△CDF繞直線CD各自獨立旋轉一周,則在所有旋轉過程中,直線AB與直線DF所成角的最大值為________.

70°
分析:兩者同時動,則線線關系不易確定,可以先固定一個探究規(guī)律,再作出判斷
解答:AB不動,由于AB∥CD,故無論直線DF運動到那里,其與CD的夾角不變,與AB的夾角也不變?yōu)?0°.
若DF不動,AB轉動,兩者的夾角在旋轉過程中先變小再變大,大小不超過固定時的夾角;
當AB轉動到BF的另一側且與原始位置共面時,若DF不動,可計算出兩者的夾角是10°,
若DF轉動同一平面的另一邊,此時兩線的夾角為70°,取到最大值.
故答案為:70°
點評:本題考查兩異面直線所成的角,由于本題中兩條線不固定,在同時變動的情況下,兩線的位置關系變化不好確定,故本題采取了先固定一個,進行研究得出規(guī)律.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
,B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求證:AB1∥平面 A1C1C;
(Ⅱ)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求證:A1B1⊥平面AA1C; 
(II)求證:AB1∥平面 A1C1C;
(II)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省煙臺市萊州一中高三第二次質(zhì)量檢測數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省青島市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習冊答案