【題目】定義在R上的偶函數(shù)f(x)在(0,+∞)上單調(diào)遞減,則( )
A.f(1)<f(﹣2)<f(3)
B.f(3)<f(﹣2)<f(1)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
【答案】B
【解析】解:f(x)是定義在R上的偶函數(shù),f(﹣x)=f(x).
∴f(﹣2)=f(2).
∵f(x)在(0,+∞)上單調(diào)遞減,
∴f(3)<f(2)<f(1),即f(3)<f(﹣2)<f(1).
故選B.
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用紅、黃、藍(lán)三種顏色去涂圖中標(biāo)號(hào)為1,2…9的9個(gè)小正方形,使得任意相鄰(有公共邊)的小正方形所涂顏色都不相同,且標(biāo)號(hào)為“3,5,7”的小正方形涂相同的顏色,則符合條件的所有涂法共有( )種
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
A.18
B.36
C.72
D.108
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}前9項(xiàng)的和為27,a10=8,則a100=( )
A.100
B.99
C.98
D.97
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列正確的語(yǔ)句的個(gè)數(shù)是________.
①輸入語(yǔ)句 INPUT a+2;
②賦值語(yǔ)句 x=x-5;
③輸出語(yǔ)句 PRINT M=2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果全集U=R,A={x|2<x≤4},B={3,4},則A∩(UB)=( )
A.(2,3)∪(3,4)
B.(2,4)
C.(2,3)∪(3,4]
D.(2,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓x2+y2=10,則以點(diǎn)P(1,1)為中點(diǎn)的弦所在直線方程為( )
A.x+y﹣2=0
B.y﹣1=0
C.x﹣y=0
D.x+3y﹣4=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于兩條不同的直線m,n和兩個(gè)不同的平面α,β,以下結(jié)論正確的是( )
A.若mα,n∥β,m,n是異面直線,則α,β相交
B.若m⊥α,m⊥β,n∥α,則n∥β
C.若mα,n∥α,m,n共面于β,則m∥n
D.若m⊥α,n⊥β,α,β不平行,則m,n為異面直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)在區(qū)間[a,b]上為單調(diào)函數(shù),且圖像是連續(xù)不斷的曲線,則下列說(shuō)法中正確的是( )
A.函數(shù)f(x)在區(qū)間[a,b]上不可能有零點(diǎn)
B.函數(shù)f(x)在區(qū)間[a,b]上一定有零點(diǎn)
C.若函數(shù)f(x)在區(qū)間[a,b]上有零點(diǎn),則必有f(a)f(b)<0
D.若函數(shù)f(x)在區(qū)間[a,b]上沒(méi)有零點(diǎn),則必有f(a)f(b)>0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com