(1)是否存在實(shí)數(shù)a.使f(x)=在區(qū)間[2,4]上是增函數(shù).若存在求出a
(2)已知函數(shù)f(x)=lg(ax-kbx)(k∈R+a>1>b>0)的定義域恰為區(qū)間(0,+∞),是否存在這樣的a、b使得f(x)恰在(1,+∞)上取正值.且f(3)=lg4.若存在.求出a、b值.若不存在,說(shuō)明理由.
【答案】分析:(1)用換元后,先判斷在[1,2]上的單調(diào)性再依據(jù)復(fù)合函數(shù)的單調(diào)性求解參數(shù)的不等式.
(2)由k>0a>1>b>0可知g(x)=ax-kbx為增函數(shù),又由定義域,可求值域,再由f(x)恰在(1,+∞)上取正值可確定f(x)的值從而求a、b
解答:解:(1)存在>1時(shí)f(x)=在區(qū)間[2,4]上是增函數(shù)證明如下:
令t=則函數(shù)變?yōu)間(t)=loga(at2-t),又原函數(shù)在[2,4]上是增函數(shù),故g(t)=loga(at2-t)在[,2]上是增函數(shù).
對(duì)于內(nèi)層函數(shù)at2-t其對(duì)稱軸為由復(fù)合函數(shù)的單調(diào)性判斷規(guī)則知,
當(dāng)a>1時(shí),內(nèi)層函數(shù)at2-t也是增函數(shù),故,即得a≥,又a×2->0,a>,綜合得,a>1時(shí)函數(shù)為增函數(shù).
當(dāng)0<a<1時(shí),內(nèi)層函數(shù)at2-t也是減函數(shù),故≥2,得a≤,又a×4-2>0,得a>此種情況下無(wú)解
綜上,當(dāng)a>1時(shí)f(x)=在區(qū)間[2,4]上是增函數(shù)
(2)存在a=,b=使得f(x)恰在(1,+∞)上取正值.且f(3)=lg4.證明如下:
已知函數(shù)f(x)=lg(ax-kbx)(k∈R+a>1>b>0)的定義域恰為區(qū)間(0,+∞)
由k>0a>1>b>0可知g(x)=ax-kbx為增函數(shù),
又定義域恰為區(qū)間(0,+∞)故可得1-k=0,k=1
欲使得f(x)恰在(1,+∞)上取正值.且f(3)=lg4.
則只須a-b=1,a3-b3=4二者聯(lián)立解得a=,b=
點(diǎn)評(píng):考查存在性問(wèn)題的轉(zhuǎn)化,第一小題中轉(zhuǎn)化成了不等式求參數(shù)的范圍,第二小題中轉(zhuǎn)化成了方程求出參數(shù)的值,這是由二者在表述上的不同所造成的,請(qǐng)讀者仔細(xì)體會(huì)這其中的奧妙.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+a≤(a+1)x,a∈R}.
(1)是否存在實(shí)數(shù)a,使得集合A中所有整數(shù)的元素和為28?若存在,求出符合條件的a,若不存在,請(qǐng)說(shuō)明理由.
(2)若以a為首項(xiàng),a為公比的等比數(shù)列前n項(xiàng)和記為Sn,對(duì)于任意的n∈N+,均有Sn∈A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
x2+ax+bx2+cx+1
,是否存在實(shí)數(shù)a、b、c,使f(x)同時(shí)滿足下列三個(gè)條件:
(1)定義域?yàn)镽的奇函數(shù);
(2)在[1,+∞)上是增函數(shù);
(3)最大值是1.若存在,求出a、b、c;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|x2-2ax+4a2-3=0},B={x|x2-x-2=0},C={x|x2+2x-8=0}.
(1)是否存在實(shí)數(shù)a使A∩B=A∪B?若存在,試求a的值,若不存在,說(shuō)明理由;
(2)若∅
?
A∩B,A∩C=∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
2
-
2x
2x+1
(a為常數(shù))
(1)是否存在實(shí)數(shù)a,使函數(shù)f(x)是R上的奇函數(shù),若存在求出來(lái),若不存在,也要說(shuō)明理由.
(2)探索函數(shù)f(x)的單調(diào)性,并利用定義加以證明.
(3)當(dāng)a=0時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-2ax+4a2-3=0},集合B={x|x2-x-2=0},集合C={x|x2+2x-8=0}
(1)是否存在實(shí)數(shù)a,使A∩B=A∪B?若存在,試求a的值,若不存在,說(shuō)明理由;
(2)若A∩B≠?,A∩C=∅,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案