【題目】已知是定義在區(qū)間內的單調函數,且對任意,都有,設為的導函數,,則函數的零點個數為( )
A. 0 B. 1 C. 2 D. 3
【答案】B
【解析】
設t=f(x)﹣lnx,則f(x)=lnx+t,又由f(t)=e+1,求出f(x)=lnx+e,從而求出g(x)的解析式,根據函數單調性求出函數的零點個數即可.
對任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,
又由f(x)是定義在(0,+∞)上的單調函數,則f(x)﹣lnx為定值,
設t=f(x)﹣lnx,則f(x)=lnx+t,
又由f(t)=e+1,即lnt+t=e+1,解得:t=e,
則f(x)=lnx+e,f′(x)=>0,
故g(x)=lnx+e﹣,則g′(x)=+>0,
故g(x)在(0,+∞)遞增,
而g(1)=e﹣1>0,g()=﹣1<0,
存在x0∈(,1),使得g(x0)=0,
故函數g(x)有且只有1個零點,
故選:B.
科目:高中數學 來源: 題型:
【題目】已知函數(,且).
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)求函數在上的最大值.
【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數來研究求得函數的單調區(qū)間.(II) 由(Ⅰ)得在上單調遞減,在上單調遞增,由此可知.利用導數和對分類討論求得函數在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調遞增,
從而得在上單調遞增,又∵,
∴當時, ,當時, ,
因此, 的單調增區(qū)間為,單調減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調遞減,在上單調遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區(qū)間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是R上的奇函數,在(0,+)上是增函數,且f(3)=0,則滿足f(x)>0的實數x的范圍是( )
A.(,3)(0,3)B.(3,0)(3,+)
C.(,3)(3,+)D.(3,0)(0,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數且點在函數的圖象上.
(1)求函數的解析式,并在圖中的直角坐標系中畫出函數的圖象;
(2)求不等式的解集;
(3)若方程有兩個不相等的實數根,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos(2x-),x∈R.
(1)求函數f(x)的最小正周期和單調遞減區(qū)間;
(2)求函數f(x)在區(qū)間[-,]上的最小值和最大值,并求出取得最值時x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分100分)統(tǒng)計結果如下表所示.
組別 | |||||||
頻數 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數分布表可以大致認為,此次問卷調查的得分服從正態(tài)分布, 近似為這1000人得分的平均值值(同一組數據用該組數據區(qū)間的中點值表示),請用正態(tài)分布的知識求;
(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調查的市民制定如下獎勵方案::
(。┑梅植坏陀的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;
(ⅱ)每次獲贈送的隨機話費和對應的概率為:
贈送的隨機話費(單元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
現(xiàn)有市民甲要參加此次問卷調查,記 (單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數學期望.
附:參考數據與公式
,若,則
①;
②;
③.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校、兩個班的數學興趣小組在一次數學對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數學興趣小組成績的平均值及方差
①班數學興趣小組的平均成績高于班的平均成績
②班數學興趣小組的平均成績高于班的平均成績
③班數學興趣小組成績的標準差大于班成績的標準差
④班數學興趣小組成績的標準差大于班成績的標準差
其中正確結論的編號為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com