精英家教網 > 高中數學 > 題目詳情

【題目】已知是定義在區(qū)間內的單調函數,且對任意,都有,設的導函數,,則函數的零點個數為( )

A. 0 B. 1 C. 2 D. 3

【答案】B

【解析】

tfx)﹣lnx,則fx)=lnx+t,又由ft)=e+1,求出fx)=lnx+e,從而求出gx)的解析式,根據函數單調性求出函數的零點個數即可.

對任意的x0,+∞),都有f[fx)﹣lnx]e+1,

又由fx)是定義在(0,+∞)上的單調函數,則fx)﹣lnx為定值,

tfx)﹣lnx,則fx)=lnx+t,

又由ft)=e+1,即lnt+te+1,解得:te,

fx)=lnx+e,f′(x)=0,

gx)=lnx+e,則g′(x)=+0,

gx)在(0+∞)遞增,

g1)=e10g)=﹣10,

存在x0,1),使得gx0)=0,

故函數gx)有且只有1個零點,

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,且).

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)求函數上的最大值.

【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .

【解析】試題分析】(I)利用的二階導數來研究求得函數的單調區(qū)間.(II) 由(Ⅰ)得上單調遞減,在上單調遞增,由此可知.利用導數和對分類討論求得函數在不同取值時的最大值.

試題解析】

(Ⅰ),

,則.

,∴上單調遞增,

從而得上單調遞增,又∵,

∴當時, ,當時, ,

因此, 的單調增區(qū)間為,單調減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調遞減,在上單調遞增,

由此可知.

,

.

,

.

∵當時, ,∴上單調遞增.

又∵,∴當時, ;當時, .

①當時, ,即,這時, ;

②當時, ,即,這時, .

綜上, 上的最大值為:當時, ;

時, .

[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區(qū)間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.

型】解答
束】
22

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線的焦點為,點,為拋物線上一點,且不在直線上,則周長的最小值為____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2x.

(1)判斷函數的奇偶性,并證明;

(2)用單調性的定義證明函數f(x)=2x在(0,+∞)上單調遞增.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)是R上的奇函數,在(0,+)上是增函數,且f3=0,則滿足fx>0的實數x的范圍是(

A.30,3B.3,03,+

C.,33,+D.3,00,3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數且點在函數的圖象上.

1)求函數的解析式,并在圖中的直角坐標系中畫出函數的圖象;

2)求不等式的解集;

3)若方程有兩個不相等的實數根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=cos(2x),x∈R.

(1)求函數f(x)的最小正周期和單調遞減區(qū)間;

(2)求函數f(x)在區(qū)間[-,]上的最小值和最大值,并求出取得最值時x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分100分)統(tǒng)計結果如下表所示.

組別

頻數

25

150

200

250

225

100

50

(1)由頻數分布表可以大致認為,此次問卷調查的得分服從正態(tài)分布, 近似為這1000人得分的平均值值(同一組數據用該組數據區(qū)間的中點值表示),請用正態(tài)分布的知識求

(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調查的市民制定如下獎勵方案::

(。┑梅植坏陀的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

(ⅱ)每次獲贈送的隨機話費和對應的概率為:

贈送的隨機話費(單元:元)

20

40

概率

0.75

0.25

現(xiàn)有市民甲要參加此次問卷調查,記 (單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數學期望.

附:參考數據與公式

,若,則

;

;

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校、兩個班的數學興趣小組在一次數學對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數學興趣小組成績的平均值及方差

班數學興趣小組的平均成績高于班的平均成績

班數學興趣小組的平均成績高于班的平均成績

班數學興趣小組成績的標準差大于班成績的標準差

班數學興趣小組成績的標準差大于班成績的標準差

其中正確結論的編號為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

同步練習冊答案