【題目】某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作 | 不積極參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,那么抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?
(2)若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項(xiàng)活動(dòng),問(wèn)兩名學(xué)生中恰有1名男生的概率是多少?
(3)是否有把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?請(qǐng)說(shuō)明理由.
附:參考數(shù)據(jù):
,其中
【答案】(1);(2);(3)有.
【解析】
(1)隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,有50種情況,抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生,有19種情況,即可求出概率;
(2)利用列舉法確定基本事件的個(gè)數(shù),即可求出兩名學(xué)生中有1名男生的概率;
(3)求出K2,與臨界值比較,即可得出結(jié)論.
(1)隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,有50種情況,抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生,有19種情況,故概率是.
(2)設(shè)這7名學(xué)生為a,b,c,d,e,A,B(大寫(xiě)為男生),則從中抽取兩名學(xué)生的所有基本事件是:ab,ac,ad,ae,aA,aB,bc,bd,be,bA,Bb,cd,ce,cA,cB,de,dA,dB,eA,eB,AB,共21個(gè),
設(shè)其中恰含有一名男生為事件M,則M中的基本事件有10個(gè),分別為aA,aB,bA,Bb, cA,cB, dA,dB,eA,eB,
∴所求概率.
(3)根據(jù)
∴我們有99.9%把握認(rèn)為“學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度”有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,解不等式;
(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在直線上,且圓經(jīng)過(guò)點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)直線過(guò)點(diǎn)且與圓相交,所得弦長(zhǎng)為4,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位決定投資3200元建一倉(cāng)庫(kù)(長(zhǎng)方體狀),高度恒定,它的后墻利用舊墻不花錢(qián),正面用鐵柵,每米長(zhǎng)造價(jià)40元,兩側(cè)墻砌磚,每米長(zhǎng)造價(jià)45元,頂部每平方米造價(jià)20元,求:
(1)倉(cāng)庫(kù)頂部面積的最大允許值是多少?
(2)為使達(dá)到最大,而實(shí)際投資又不超過(guò)預(yù)算,那么正面鐵柵應(yīng)設(shè)計(jì)為多長(zhǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面是菱形,是的中點(diǎn),點(diǎn)在側(cè)棱上.
(1)求證:平面;
(2)若是的中點(diǎn),求證:平面;
(3)若,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正方形沿對(duì)角線折成直二面角,
①與平面所成角的大小為
②是等邊三角形
③與所成的角為
④
⑤二面角為
則上面結(jié)論正確的為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體,底面ABFE是邊長(zhǎng)為2的正方形,DE與CF均垂直于平面ABFE,且.
(1)證明:BE∥平面ACD;
(2)求三棱錐B﹣ACD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校想了解高二數(shù)學(xué)成績(jī)?cè)趯W(xué)業(yè)水平考試中的情況,從中隨機(jī)抽出人的數(shù)學(xué)成績(jī)作為樣本并進(jìn)行統(tǒng)計(jì),頻率分布表如下表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | |||
第2組 | |||
第3組 | |||
第4組 | |||
第5組 | |||
合計(jì) |
(1)據(jù)此估計(jì)這次參加數(shù)學(xué)考試的高二學(xué)生的數(shù)學(xué)平均成績(jī);
(2)從這五組中抽取人進(jìn)行座談,若抽取的這人中,恰好有人成績(jī)?yōu)?/span>分,人成績(jī)?yōu)?/span>分,人成績(jī)?yōu)?/span>分,人成績(jī)?yōu)?/span>分,求這人數(shù)學(xué)成績(jī)的方差;
(3)從人的樣本中,隨機(jī)抽取測(cè)試成績(jī)?cè)?/span>內(nèi)的兩名學(xué)生,設(shè)其測(cè)試成績(jī)分別為,.
(i)求事件“”的概率;
(ii)求事件“”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com