【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機調(diào)查這個班的一名學生,那么抽到不積極參加班級工作且學習積極性不高的學生的概率是多少?
(2)若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現(xiàn)從中抽取兩名學生參加某項活動,問兩名學生中恰有1名男生的概率是多少?
(3)是否有把握認為學生的學習積極性與對待班級工作的態(tài)度是否有關系?請說明理由.
附:參考數(shù)據(jù):
,其中
【答案】(1);(2);(3)有.
【解析】
(1)隨機調(diào)查這個班的一名學生,有50種情況,抽到不積極參加班級工作且學習積極性不高的學生,有19種情況,即可求出概率;
(2)利用列舉法確定基本事件的個數(shù),即可求出兩名學生中有1名男生的概率;
(3)求出K2,與臨界值比較,即可得出結論.
(1)隨機調(diào)查這個班的一名學生,有50種情況,抽到不積極參加班級工作且學習積極性不高的學生,有19種情況,故概率是.
(2)設這7名學生為a,b,c,d,e,A,B(大寫為男生),則從中抽取兩名學生的所有基本事件是:ab,ac,ad,ae,aA,aB,bc,bd,be,bA,Bb,cd,ce,cA,cB,de,dA,dB,eA,eB,AB,共21個,
設其中恰含有一名男生為事件M,則M中的基本事件有10個,分別為aA,aB,bA,Bb, cA,cB, dA,dB,eA,eB,
∴所求概率.
(3)根據(jù)
∴我們有99.9%把握認為“學生的學習積極性與對待班級工作的態(tài)度”有關系.
科目:高中數(shù)學 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米長造價45元,頂部每平方米造價20元,求:
(1)倉庫頂部面積的最大允許值是多少?
(2)為使達到最大,而實際投資又不超過預算,那么正面鐵柵應設計為多長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體,底面ABFE是邊長為2的正方形,DE與CF均垂直于平面ABFE,且.
(1)證明:BE∥平面ACD;
(2)求三棱錐B﹣ACD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校想了解高二數(shù)學成績在學業(yè)水平考試中的情況,從中隨機抽出人的數(shù)學成績作為樣本并進行統(tǒng)計,頻率分布表如下表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | |||
第2組 | |||
第3組 | |||
第4組 | |||
第5組 | |||
合計 |
(1)據(jù)此估計這次參加數(shù)學考試的高二學生的數(shù)學平均成績;
(2)從這五組中抽取人進行座談,若抽取的這人中,恰好有人成績?yōu)?/span>分,人成績?yōu)?/span>分,人成績?yōu)?/span>分,人成績?yōu)?/span>分,求這人數(shù)學成績的方差;
(3)從人的樣本中,隨機抽取測試成績在內(nèi)的兩名學生,設其測試成績分別為,.
(i)求事件“”的概率;
(ii)求事件“”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com