已知A,B為圓O上兩點(diǎn),且弦長|AB|等于半徑,G為圓內(nèi)任意一點(diǎn),則G落在小扇形AOB內(nèi)的概率為(  )
分析:根據(jù)A,B為圓O上兩點(diǎn),且弦長|AB|等于半徑可得∠AOB,然后求出小扇形AOB與圓O的面積,求比值即可.
解答:解:∵A,B為圓O上兩點(diǎn),且弦長|AB|等于半徑,
∠AOB=
π
3

則G為圓內(nèi)任意一點(diǎn),則G落在小扇形AOB內(nèi)的概率為
S扇形
S圓O
=
1
6
π
π
=
1
6

故選C.
點(diǎn)評(píng):本題是幾何概型的概率,對(duì)于這樣的問題,一般要通過把試驗(yàn)發(fā)生包含的事件所對(duì)應(yīng)的圖形做出面積,用面積的比值得到結(jié)果,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)命題:
①已知A、B為兩個(gè)定點(diǎn),若|PA|+|PB|=k(k為常數(shù)),則動(dòng)點(diǎn)P的軌跡為橢圓.
②雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn).
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率.
④過定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
(
OA
+
OB
)
,則動(dòng)點(diǎn)P的軌跡為橢圓;
其中真命題的序號(hào)為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌三模)已知A,B是圓x2+y2=2上兩動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),且∠AOB=120°,以A,B為切點(diǎn)的圓的兩條切線交于點(diǎn)P,則點(diǎn)P的軌跡方程為
x2+y2=8
x2+y2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以下四個(gè)命題:
①已知A、B為兩個(gè)定點(diǎn),若|PA|+|PB|=k(k為常數(shù)),則動(dòng)點(diǎn)P的軌跡為橢圓.
②雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn).
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率.
④過定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
(
OA
+
OB
)
,則動(dòng)點(diǎn)P的軌跡為橢圓;
其中真命題的序號(hào)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:許昌模擬 題型:填空題

已知A,B是圓x2+y2=2上兩動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),且∠AOB=120°,以A,B為切點(diǎn)的圓的兩條切線交于點(diǎn)P,則點(diǎn)P的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省長春實(shí)驗(yàn)中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

以下四個(gè)命題:
①已知A、B為兩個(gè)定點(diǎn),若|PA|+|PB|=k(k為常數(shù)),則動(dòng)點(diǎn)P的軌跡為橢圓.
②雙曲線與橢圓有相同的焦點(diǎn).
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率.
④過定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若,則動(dòng)點(diǎn)P的軌跡為橢圓;
其中真命題的序號(hào)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案