18.已知向量$\overrightarrow a=(3,4)$,$\overrightarrow b=(x,1)$,若$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,則實數(shù)x等于7.

分析 利用向量垂直與數(shù)量積的關系即可得出.

解答 解:因為$\overrightarrow a-\overrightarrow b=(3-x,3)$,所以$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a⇒$(3-x)×3+3×4=0⇒x=7,
故答案為:7.

點評 本題考查了向量垂直與數(shù)量積的關系,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在長方體ABCD-A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截長方體得到一個矩形EFGH,且A1E=D1F=2,AH=DG=5.
(1)求截面EFGH把該長方體分成的兩部分體積之比;
(2)求直線AF與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知數(shù)列{an} 滿足a1=$\frac{1}{3}$,a2=$\frac{2}{3}$,an+2-an+1=(-1)n+1(an+1-an)(n∈N*),數(shù)列{an}的前n項和為Sn,則S2017=$\frac{4033}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知公比q≠1的等比數(shù)列{an}前n項和Sn,a1=1,S3=3a3,則S5=( 。
A.1B.5C.$\frac{31}{48}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=ex-ax2-2x(a∈R).
(1)當a=0時,求f(x)的最小值;
(2)當a<$\frac{e}{2}$-1時,證明:不等式f(x)>$\frac{e}{2}$-1在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=|2x+3|-|2x-1|.
(Ⅰ)求不等式f(x)<2的解集;
(Ⅱ)若存在x∈R,使得f(x)>|3a-2|成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知x,y是[0,1]上的兩個隨機數(shù),則x,y滿足y>2x的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.某企業(yè)市場調(diào)研部為調(diào)查新開發(fā)的產(chǎn)品定價與銷量之間的關系,在某地區(qū)進行小范圍差價試銷,已知該產(chǎn)品定價區(qū)間為[96,106](單位:元/件),已知統(tǒng)計了600件產(chǎn)品的銷售價格,其頻率分布直方圖如圖所示,若各個小方形的高構(gòu)成一個等差數(shù)列,則在這600件產(chǎn)品中,銷售價格在區(qū)間[98,102)內(nèi)的產(chǎn)品件數(shù)是135.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在平面直角坐標中,過F(1,0)的直線FM與y軸交于點M,直線MN與直線FM垂直,且與x軸交于點N,T是點N關于直線FM的對稱點.
(1)點T的軌跡為曲線C,求曲線C的方程;
(2)橢圓E的中心在坐標原點,F(xiàn)為其右焦點,且離心率為$\frac{1}{2}$,過點F的直線l與曲線C交于A、B兩點,與橢圓交于P、Q兩點,請問:是否存在直線使A、F、Q是線段PB的四等分點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案