某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).

(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

(1)22(2)4名優(yōu)秀工人(3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙等五名大運(yùn)會(huì)志愿者被隨機(jī)分到AB、CD四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(1)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校在一次趣味運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,高一、高二、高三各代表隊(duì)人數(shù)分別為120人、120人、人.為了活躍氣氛,大會(huì)組委會(huì)在頒獎(jiǎng)過程中穿插抽獎(jiǎng)活動(dòng),并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取20人在前排就坐,其中高二代表隊(duì)有6人.

(1)求的值;
(2)把在前排就坐的高二代表隊(duì)6人分別記為,現(xiàn)隨機(jī)從中抽取2人上臺(tái)抽獎(jiǎng),
至少有一人上臺(tái)抽獎(jiǎng)的概率;
(3)抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)之間的均勻隨機(jī)數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該代表中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求該代表中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
6
 
女生
10
 
 
合計(jì)
 
 
48
已知在全班48人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(2)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人玩一種游戲:在裝有質(zhì)地、大小完全相同,編號(hào)分別為1,2,3,4,5五個(gè)球的口袋中,甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)的和為偶數(shù)算甲贏,否則算乙贏.
(1)求甲贏且編號(hào)和為6的事件發(fā)生的概率;
(2)這種游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)R,若是從區(qū)間中隨機(jī)抽取的一個(gè)數(shù),是從區(qū)間中隨機(jī)抽取的一個(gè)數(shù),求方程沒有實(shí)數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩艘貨輪都要在某個(gè)泊位停靠6小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段中隨機(jī)到達(dá),試求兩船中有一艘在停泊位時(shí),另一艘船必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人進(jìn)行投籃比賽,兩人各投3球,誰投進(jìn)的球數(shù)多誰獲勝,已知每次投籃甲投進(jìn)的概率為,乙投進(jìn)的概率為,求:
(1)甲投進(jìn)2球且乙投進(jìn)1球的概率;
(2)在甲第一次投籃未投進(jìn)的條件下,甲最終獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)促銷活動(dòng),促銷規(guī)則如下:到該商場(chǎng)購物消費(fèi)滿100元就可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,進(jìn)行抽獎(jiǎng)(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動(dòng)過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎(jiǎng),獲得10元獎(jiǎng)金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎(jiǎng),獲得5元獎(jiǎng)金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(jiǎng)(若指針停到兩區(qū)間的實(shí)線處,則重新轉(zhuǎn)動(dòng)).若顧客在一次消費(fèi)中多次中獎(jiǎng),則對(duì)其獎(jiǎng)勵(lì)進(jìn)行累加.已知顧客甲到該商場(chǎng)購物消費(fèi)了268元,并按照規(guī)則參與了促銷活動(dòng).

(1)求顧客甲中一等獎(jiǎng)的概率;
(2)記X為顧客甲所得的獎(jiǎng)金數(shù),求X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案