如圖,已知P是正方形ABCD外一點(diǎn),且PA=3,PB=4,則PC的最大值是___________.

 

【答案】

【解析】

試題分析:過B作BE⊥BP,使E、A在BP的兩側(cè),且BE=PB=4。顯然有:PE=.

∵ABCD是正方形,∴∠ABC=90°、AB=BC!唷螾BE+∠PBA=∠ABC+∠PBA=90°+∠PBA,∴∠ABE=∠CBP!連E=BP、AB=BC、∠ABE=∠CBP,∴△ABE≌△CBP,∴AE=PC。考查P、A、E三點(diǎn),顯然有:AEPA+PE=3+!喈(dāng)點(diǎn)P落在線段AE上時,AE有最大值為,∴PC的最長距離為

考點(diǎn):三角形全等 三角形三邊關(guān)系

點(diǎn)評:本題的關(guān)鍵是能巧妙利用三角形全等的知識,構(gòu)造全等三角形,把求PC的長轉(zhuǎn)化成

求AE的長,屬難題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知P是正方形ABCD所在平面外一點(diǎn),點(diǎn)P在平面ABCD內(nèi)的射影O是正方形的中心,PO=OD=a,E是PD的中點(diǎn)
(1)求證:PD⊥平面AEC
(2)求直線BP到平面AEC的距離
(3)求直線BC與平面AEC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD為正方形,P是ABCD所在平面外一點(diǎn),P在平面ABCD上的射影恰好是正方形的中心O,Q是CD的中點(diǎn),求下列各題中x、y的值:

(1)= +x+y;??

(2) =x+y+.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是一塊邊長為100 m的正方形地皮,其中AST是一半徑為90 m的扇形小山,其余部分是平地.一開發(fā)商想在平地上建一個矩形車場,使矩形的一個頂點(diǎn)P在弧ST上,相鄰兩邊CQ,CR落在正方形的邊BC、CD上,求矩形停車場PQCR面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知P是正方形ABCD平面外一點(diǎn),M,N分別是PA,BD上的點(diǎn),且PM∶MA=BN∶ND=5∶8,求證:直線MN∥平面PBC.

查看答案和解析>>

同步練習(xí)冊答案