四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB、BD、DC、CA于點E、F、G、H.
(Ⅰ)求四面體ABCD的體積;
(Ⅱ)證明:四邊形EFGH是矩形.
考點:直線與平面垂直的性質(zhì),棱柱、棱錐、棱臺的體積
專題:綜合題,空間位置關(guān)系與距離
分析:(Ⅰ)證明AD⊥平面BDC,即可求四面體ABCD的體積;
(Ⅱ)證明四邊形EFGH是平行四邊形,EF⊥HG,即可證明四邊形EFGH是矩形.
解答: (Ⅰ)解:由題意,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,
∴AD⊥平面BDC,
∴四面體ABCD的體積V=
1
3
×
1
2
×2×2×1
=
2
3
;
(Ⅱ)證明:∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,
∴BC∥FG,BC∥EH,
∴FG∥EH.
同理EF∥AD,HG∥AD,
∴EF∥HG,
∴四邊形EFGH是平行四邊形,
∵AD⊥平面BDC,
∴AD⊥BC,
∴EF⊥FG,
∴四邊形EFGH是矩形.
點評:本題考查線面垂直,考查線面平行性質(zhì)的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

“sinα>0”是“α為銳角”的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)曲線C1的參數(shù)方程為
x=4t
y=
3
+4t
(t為參數(shù)),曲線C2的極坐標方程為ρ=2
2
sinθ,則曲線C1與C2交點的個數(shù)為(  )
A、0B、1C、2D、1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在[0,1]上的函數(shù)f(x)滿足:
①f(0)=f(1)=0;
②對所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<
1
2
|x-y|.
若對所有x,y∈[0,1],|f(x)-f(y)|<m恒成立,則m的最小值為(  )
A、
1
2
B、
1
4
C、
1
D、
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,四邊形ABCD為矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如圖2折疊;折痕EF∥DC,其中點E,F(xiàn)分別在線段PD,PC上,沿EF折疊后點P疊在線段AD上的點記為M,并且MF⊥CF.
(1)證明:CF⊥平面MDF;
(2)求三棱錐M-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐,底面ABCD為菱形,PA⊥平面ABCD,PA=AB=2,∠ABC=60°,E是CD的中點,F(xiàn)為PC上一點,滿足FC=2PF.
(1)證明:AE⊥PB;
(2)求直線AF與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,F(xiàn)E∥CD,交PD于點E.
(1)證明:CF⊥平面ADF;
(2)求二面角D-AF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F、G分別為AC、DC、AD的中點.
(Ⅰ)求證:EF⊥平面BCG;
(Ⅱ)求三棱錐D-BCG的體積.
附:錐體的體積公式V=
1
3
Sh,其中S為底面面積,h為高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,點(2,
π
6
)到直線ρsin(θ-
π
6
)=1的距離是
 

查看答案和解析>>

同步練習冊答案