某公司為一家制冷設(shè)備廠設(shè)計生產(chǎn)一種長方形薄板,其周長為4米,這種薄板須沿其對角線折疊后使用.如圖所示,ABCD(AB>AD)為長方形薄板,沿AC折疊后,AB'交DC于點P.當(dāng)△ADP的面積最大時最節(jié)能,凹多邊形ACB'PD的面積最大時制冷效果最好.
(1)設(shè)AB=x米,用x表示圖中DP的長度,并寫出x的取值范圍;
(2)若要求最節(jié)能,應(yīng)怎樣設(shè)計薄板的長和寬?
(3)若要求制冷效果最好,應(yīng)怎樣設(shè)計薄板的長和寬?

【答案】分析:(1)利用PA2=AD2+DP2,構(gòu)建函數(shù),可得DP的長度;
(2)表示出△ADP的面積,利用基本不等式,可求最值;
(3)表示出△ADP的面積,利用導(dǎo)數(shù)知識,可求最值.
解答:解:(1)由題意,AB=x,BC=2-x.因x>2-x,故1<x<2   
設(shè)DP=y,則PC=x-y.
因△ADP≌△CB′P,故PA=PC=x-y.
由PA2=AD2+DP2,得(x-y)2=(2-x)2+y2,即
(2)記△ADP的面積為S1,則S1==,
當(dāng)且僅當(dāng)x=∈(1,2)時,S1取得最大值  
故當(dāng)薄板長為米,寬為米時,節(jié)能效果最好  
(3)記△ADP的面積為S2,則S2S2S2==,
于是S2′=,∴,
關(guān)于x的函數(shù)S2在(1,)上遞增,在(,2)上遞減.
所以當(dāng)時,S2取得最大值  
故當(dāng)薄板長為米,寬為米時,制冷效果最好
點評:本題主要考查應(yīng)用所學(xué)數(shù)學(xué)知識分析問題與解決問題的能力.試題以常見的圖形為載體,再現(xiàn)對基本不等式、導(dǎo)數(shù)等的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我市某公司為激勵工人進行技術(shù)革新,既保質(zhì)量又提高產(chǎn)值,對小組生產(chǎn)產(chǎn)值超產(chǎn)部分進行獎勵.設(shè)年底時超產(chǎn)產(chǎn)值為x(x>0)萬元,當(dāng)x不超過35萬元時,獎金為log6(x+1)萬元;當(dāng)x超過35萬元時,獎金為5%•(x+5)萬元.
(1)若某小組年底超產(chǎn)產(chǎn)值為95萬元,則其超產(chǎn)獎金為多少?
(2)寫出獎金y(單位:萬元)關(guān)于超產(chǎn)產(chǎn)值x的函數(shù)關(guān)系式;
(3)某小組想爭取年超產(chǎn)獎金y∈[1,8](單位:萬元),則超產(chǎn)產(chǎn)值x應(yīng)在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某公司為上海世博會生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=
10.8-
1
30
x
2
    (0<x≤10)
108
x
-
1000
3x2
        (x>10)

(Ⅰ)寫出年利潤W(萬元)關(guān)于該特許商品x(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通一模)某公司為一家制冷設(shè)備廠設(shè)計生產(chǎn)一種長方形薄板,其周長為4米,這種薄板須沿其對角線折疊后使用.如圖所示,ABCD(AB>AD)為長方形薄板,沿AC折疊后,AB'交DC于點P.當(dāng)△ADP的面積最大時最節(jié)能,凹多邊形ACB'PD的面積最大時制冷效果最好.
(1)設(shè)AB=x米,用x表示圖中DP的長度,并寫出x的取值范圍;
(2)若要求最節(jié)能,應(yīng)怎樣設(shè)計薄板的長和寬?
(3)若要求制冷效果最好,應(yīng)怎樣設(shè)計薄板的長和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省廈門市同安一中高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知某公司為上海世博會生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=
(Ⅰ)寫出年利潤W(萬元)關(guān)于該特許商品x(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

同步練習(xí)冊答案