設等差數(shù)列{an}的前n項和為Sn,若a11-a8=3,S11-S8=3,則使an>0的最小正整數(shù)n的值是( 。
分析:由a11-a8=3d=3,知d=1,由S11-S8=a11+a10+a9=3a1+27d=3,知a1=-8,故an=-8+(n-1),由此能夠求出使an>0的最小正整數(shù)n的值.
解答:解:∵a11-a8=3d=3,∴d=1,
∵S11-S8=a11+a10+a9=3a1+27d=3,
∴a1=-8,
∴an=-8+(n-1)>0,
解得n>9,
因此最小正整數(shù)n的值是10.
故選C.
點評:本題考查等差數(shù)列的通項公式和前n項和公式的合理運用,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案