已知橢圓的右焦點恰好是拋物線的焦點,

是橢圓的右頂點.過點的直線交拋物線兩點,滿足

其中是坐標原點.

(1)求橢圓的方程;

(2)過橢圓的左頂點軸平行線,過點軸平行線,直線

相交于點.若是以為一條腰的等腰三角形,求直線的方程

(1),,,設直線代入中,

整理得。設,則

, , 由    

,  解得  (舍),得

所以橢圓的方程為.                     (7分)

(2)橢圓的左頂點,所以點. 易證三點共線.

(I)當為等腰的底邊時,由于,是線段的中點,

,所以,即直線的方程為;        (11分)

 (II) 當為等腰的底邊時,   又,

     解得   ,

所以直線的方程為,即;       (15分)

綜上所述,當為等腰三角形時,直線的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題15分)已知橢圓的右焦點恰好是拋物線的焦點

是橢圓的右頂點.過點的直線交拋物線兩點,滿足

其中是坐標原點.

(1)求橢圓的方程;

(2)過橢圓的左頂點軸平行線,過點軸平行線,直線

相交于點.若是以為一條腰的等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:寧波市2010屆高三三?荚嚴砜茢(shù)學試題 題型:解答題

(本小題15分)已知橢圓的右焦點恰好是拋物線的焦點,

是橢圓的右頂點.過點的直線交拋物線兩點,滿足,

其中是坐標原點.

(1)求橢圓的方程;

(2)過橢圓的左頂點軸平行線,過點軸平行線,直線

相交于點.若是以為一條腰的等腰三角形,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年寧夏高考數(shù)學模擬試卷1(理科)(解析版) 題型:解答題

已知橢圓的右焦點恰好是拋物線C:y2=4x的焦點F,點A是橢圓E的右頂點.過點A的直線l交拋物線C于M,N兩點,滿足OM⊥ON,其中O是坐標原點.
(1)求橢圓E的方程;
(2)過橢圓E的左頂點B作y軸平行線BQ,過點N作x軸平行線NQ,直線BQ與NQ相交于點Q.若△QMN是以MN為一條腰的等腰三角形,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學模擬組合試卷(2)(解析版) 題型:解答題

已知橢圓的右焦點恰好是拋物線C:y2=4x的焦點F,點A是橢圓E的右頂點.過點A的直線l交拋物線C于M,N兩點,滿足OM⊥ON,其中O是坐標原點.
(1)求橢圓E的方程;
(2)過橢圓E的左頂點B作y軸平行線BQ,過點N作x軸平行線NQ,直線BQ與NQ相交于點Q.若△QMN是以MN為一條腰的等腰三角形,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省寧波市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓的右焦點恰好是拋物線C:y2=4x的焦點F,點A是橢圓E的右頂點.過點A的直線l交拋物線C于M,N兩點,滿足OM⊥ON,其中O是坐標原點.
(1)求橢圓E的方程;
(2)過橢圓E的左頂點B作y軸平行線BQ,過點N作x軸平行線NQ,直線BQ與NQ相交于點Q.若△QMN是以MN為一條腰的等腰三角形,求直線MN的方程.

查看答案和解析>>

同步練習冊答案